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Chapter 5. Oscillatory processes

Oscillatory processes or simply oscillations are such forms of
motion that have a repeatability in time. Oscillations are called periodic
if the physical quantities characterizing them are repeated at equal
intervals of time. All oscillations, regardless of their physical nature, are
described by the same equations, which differ from each other only by
their constituent physical quantities that characterize the observed
oscillatory process.

5.1. Types of oscillations

A distinction is made between mechanical and non-mechanical
oscillations. The mechanical ones, in particular, include the above-
mentioned oscillations of systems in the field of action of elastic and
gravitational forces. These are, for example, oscillations of a
mathematical or physical pendulum under the action of gravity,
oscillations of a spring under the action of elastic forces, etc. Mechanical
oscillations also include periodic movements of bodies along closed paths
(circle, ellipse, etc.) under the action of central forces, piston motion in
an internal combustion engine, vibrations of strings, air and gases,
various kinds of vibrations, etc. The sources of mechanical oscillations
are, as a rule, the oscillations of bodies (vibrators, membranes, etc.),
continuous media (liquids, gases) as well as structural elements
(particles) of physical systems. The latter include, for example, the
oscillatory motion of gas molecules, free electrons or other electric
charges in conductors of various kinds, etc.

Non-mechanical oscillations refer to the physical characteristics
of more complex forms of motion. Their sources are repetitive changes
in time of both mechanical and non-mechanical movements.

For example, the sources of electromagnetic oscillations are
periodically changing in time mechanical movements of electric charges
in conductors or changes of electric and magnetic values of the
corresponding fields. The sources of climatic and other types of
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oscillations of atmospheric and lithospheric processes are periodically
changing values of temperature, pressure, etc. The sources of oscillations
of vital activity of organisms are rhythmically repeated biological
processes, and the sources of oscillations of radiation and radioactive
background and cyclically changing intra-atomic or intranuclear
processes are periodically repeated interactions, as well as the birth and
annihilation of elementary particles, etc.

Depending on the nature of the impact on the system of external
factors oscillations are divided into natural (free), forced, parametric and
self-renewing (self-oscillation).

The natural, or normal mode oscillations are the oscillations that
occur in the system, in the absence of influence on it of external factors.
The normal mode oscillations are, for example, those of various kinds of
pendulums left to themselves, as well as the oscillations of electric and
magnetic fields in electric circuits in the absence of external non-electric
sources.

Forced oscillations refer to oscillations that occur under the
influence of periodically changing external factors. For example, the
oscillation of a swing under the action of rocking impulses produced by
humans, or the oscillation of electric and magnetic fields in AC electric
circuits initiated by sources of external non-electrical energy.

Self-oscillation is an oscillating process which, like forced
oscillations, occurs under the action of external energy introduced into
the system. The nature of this energy input differs,

however, in that its source is commutated by feedback and, by
compensating for the energy of dissipation synchronously with the
oscillations of the system, keeps the oscillations in it unchanged. Self-
oscillations occur, for example, in mechanical clocks, electromagnetic
oscillators, as well as in the heart muscle.

Parametric oscillations are such forced oscillations, under the
action of which there is a periodic change of any system parameter. For
example, a periodic change in the length of a mathematical pendulum, or
the capacitance (inductance) in an alternating current circuit, etc.
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Systems in which oscillatory processes are possible are divided
into one-dimensional systems (oscillators) and multidimensional
systems. One-dimensional systems are those having one degree of
freedom and characterized, respectively, by one generalized coordinate
q. Systems with two degrees of freedom can be distinguished among
multidimensional systems. The oscillations of a multidimensional system
can be viewed as the result of addition of several oscillations of one-
dimensional systems. These are, for example, resultant oscillations of
systems consisting of one-dimensional oscillators that make oscillations
in mutually perpendicular directions, etc.

Oscillations of systems are divided into linear, described by linear
differential equations, and non-linear, described by non-linear equations.

The character of oscillations is uniquely described by the law of
oscillatory motion. 𝑞 = 𝑞(𝑡) (5.1)

When the law of oscillatory motion is given by trigonometric
functions 𝑆𝑖𝑛 𝛼𝑡 or 𝐶𝑜𝑠 𝛼𝑡, oscillations are called harmonic. In all other
cases, oscillations are called non-harmonic or complex. Systems that
perform harmonic oscillations are called harmonic oscillators.

In mathematics it is proved that any complex oscillation can be
represented as a result of addition of harmonic oscillations. The specified
sum of harmonic oscillations is described by the Fourier series (Appendix
2).

In the process of oscillation there is a transformation of some
kinds of energy into other kinds of energy. For example, in mechanical
oscillations, kinetic energy is converted into potential energy and back.
During electromagnetic oscillations there is a mutual transformation of
electric and magnetic energy.

If the natural oscillations occur without losses (dissipation) of
energy, they are called undamped. According to the law of conservation
of energy, undamped oscillations, once created, continue indefinitely.
Undamped natural oscillations are an idealization of real oscillations,
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which never occur without energy dissipation. The natural vibrations of
real systems are always damped.

An equilibrium state is a state of a system that does not change
over time. The motion of a system near an equilibrium state is the result
of its small deviations (perturbations) from equilibrium. For one-
dimensional systems, equilibrium is stable if, under a small perturbation
(deviation), the system returns to it by making damped free oscillations
relative to it.

Mechanical systems, as was shown above (Section 4.1.1.2), are in
a state of stable equilibrium if their potential energy in this state is
minimal. In the case of an unstable equilibrium, the system deviates
from it further and further over time, and the deviations increase
aperiodically. For multidimensional systems, the motion near the
equilibrium state is more complex and depends to a large extent on the
initial conditions. In the case when small deviations of the system at any
smallness translate the system from one state of equilibrium to another,
the equilibrium is called indifferent.

5.1.1. Natural undamped oscillat0ions

The equation of motion of a system performing oscillations,
generalized to any form of motion, is called the equation of oscillation.

Let us consider the equation of natural mechanical oscillations in
the absence of friction. Let us choose an inertial reference system and
assume, for simplicity, that the oscillations occur with negligible
amplitude in such a one-dimensional system, which can be identified with
a material point. Let us place the origin of coordinates at the equilibrium
position of the system. Let us direct the Ox axis along the deviation of
the material point from the equilibrium position. Then the current
coordinate at a given time x(t) coincides with the amount of deviation of
the system. Let us assume that at the initial moment of time t = t0 = 0 the
system is in a state of stable equilibrium. Then, when the system deviates,
there is a force arises that is directed against the deviation. In other words,
in the direction of the Ox axis
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Fx = kx, (5.2)

where k is the transfer mobility of the system.
For small deviations, the relation (5.2) is valid for any mechanical

system. The force counteracting the deflections is called quasi-elastic.
Since the oscillations are free, according to the second law of dynamics

mẍ = -kx (5.3)

Equation (5.3) can be generalized to any natural undamped
oscillatory processes. In this case𝐿�̈� = − 𝑞, (5.4)

where q is the generalized coordinate of one-dimensional oscillations;
L is a quantity characterizing the degree of inertness of the system,
counteracting any possible changes in its state, and is equivalent to the
mass of the mechanical system;�̈� is the generalized rate of deviation of the system state from equilibrium,
equivalent to the acceleration of the mechanical system;

 is the coefficient of proportionality between the generalized force and
the value of deviation of the system from equilibrium, equivalent to
transfer mobility.

Let us write (5.4) in the following form�̈� + 1𝐿𝐶 𝑞 = 0 (5.5)

The relation (5.5) is a generalized equation of small one-
dimensional free oscillations of non-dissipative systems. In mathematical
terms, this is a linear one-dimensional second-order differential equation
with constant coefficients (Appendix 2). Therefore, the oscillations it
describes are linear. Its solution has the form𝑞 = 𝐶 𝑒 + 𝐶 𝑒 (5.6)
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where C1 and C2 are integration constants;
r1 and r2 are roots of the characteristic equation, which is obtained from
the differential equation by replacing the derivatives by the
corresponding degrees𝑟 + 1𝐿𝐶 𝑟 = 0 (5.7)

Let us denote 1𝐿𝐶 = 𝜔 (5.8)

Then 𝑟 + 𝜔 𝑟 = 0 (5.9)

The roots of equation (5.9) are𝑟 , = ±𝑗𝜔 (5.10)

Substituting (5.10) into (5.6) gives𝑞 = 𝐶 𝑒 + 𝐶 𝑒 (5.11)

If we assume that at the initial moment of time 𝑡 = 𝑡 = 0 and
accordingly, 𝑞 = 𝑞�̇� = 0 (5.12)

then 𝐶 + 𝐶 = 𝑞𝐶 − 𝐶 = 0 
Determining C1 and  C2 from this system and substituting them

into (5.11), we obtain𝑞 = 𝑞 𝑒 + 𝑒2 (5.13)
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From (5.13) and the Euler formula (Appendix 5) it follows that𝑞 = 𝑞 cos 𝜔 𝑡 (5.14)

Solutions and their linear combinations of the following form also
satisfy equation (5.5)𝑞 = 𝑞 cos(𝜔 𝑡 + 𝜑 ) and 𝑞 = 𝑞 sin(𝜔 𝑡 + 𝜑 )
*where 𝜑   is a constant.

It follows from (5.14) that the value 𝑞 = 𝑞  is the maximum
deviation of the system from the state of equilibrium. In the theory of
oscillations the value qm is called the amplitude (see Section 2.6.1).

The value of the generalized coordinate q is expressed through the
function cos 𝜑. This means that the one-dimensional natural oscillations
at small deviations of the system are harmonic.

It is known that cos 𝜑 is a periodically changing function with
period 2𝜋, i.e.cos(𝜑 + 2𝜋𝑛) = cos 𝜑, where n = 1, 2, 3... (5.15)

It is also known (see Section 2.6.1) that the time interval t = T at
which the quantity q repeats its value, characterizes the period of change
of the physical quantity in question.

From the equationcos 𝜔 𝑇 = 1 (5.16)

it follows that 𝜔 = 2𝜋𝑇 = 2𝜋𝑣 (5.17)

where 𝜔  is the cyclic frequency of oscillations;
v is the linear frequency of oscillations.𝑣 = 1𝑇 (5.18)
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For free oscillations the value of o0 is called the natural
frequency of oscillations.

If T = 1, then
v = 1.

This  unit  (see  Section  2.6.1)  is  called  Hertz  (Hz).  From  this
definition, it follows that 1 Hz is the frequency of oscillation equal to one
oscillation per second1𝐻𝑧 = 1 𝑜𝑠𝑐.𝑠𝑒𝑐𝑜𝑛𝑑 (5.19)

It follows from (5.17) and (5.18) that𝜔 = 2𝜋𝑣 (5.20)

On the other hand, according to (5.14)𝜔 = 𝜑𝑡 (5.21)

where 𝜑 is the argument value of the harmonic function;
The value 𝜔  determines the rate of change of the angular

argument 𝜑 over time. It is therefore also called the angular frequency.
For natural oscillations, the angular frequency is called the natural
frequency. It also follows from (5.21) that the value𝜑 = 2𝜋 𝑡𝑇 (5.22)

It is clear from (5.22) that the quantity 𝜑, called the oscillation
phase, determines a part of the oscillation period of the system elapsed
up to the time t (see also Section 2.6.1). For example, if𝜑 = 𝑛 𝜋2
then 𝑛 = = 2𝜋𝑛 ; 𝑡 =
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This means that since the beginning of the next oscillation period,
the system has passed its fourth part. The phase of the oscillations at the
time t = t0 is called the initial phase, so in the general case𝑞 = 𝑞 cos(𝜔 𝑡 + 𝜑 ) (5.23)

where qm = A0 is the amplitude of oscillations;𝜑  is the initial phase.
It follows from (5.23) that the speed of one-dimensional

harmonic oscillations𝑞 = 𝑣 cos(𝜔 𝑡 +𝜑 ) (5.24)

where 𝑣  is the amplitude value of the velocity.𝑣 = −𝜔 𝑞
The minus sign means that the velocity is always directed against

the deflection of q (if q increases, the velocity decreases, and vice versa).
Since at t = t0 = 0𝑞 = 𝑞 cos 𝜑 ; �̇� = −𝜔 𝑞 sin 𝜑

then 𝜑 = − tan ̇ ; 𝑞 = 𝑞 1 + ̇
From field theory (Appendix 3) it is known that for potential

fields the generalized force Q𝑄 = − 𝑑𝑈𝑑𝑞 (5.25)

where U is the interaction energy of the field sources and test charges.
Since, according to (5.4)𝑄 = − 1𝑐 𝑞
Then



13

𝑈 = 1𝐶 𝑞𝑑𝑞 (5.26)

By integrating (4.20), we obtain that𝑈 = 𝑞2𝐶 + 𝐵 (5.27)

If we assume that q = 0 when U = 0, V = 0, then𝑈 = 𝑞2С (5.28)

Total energy of the mechanical system𝜀 = 𝜀 + 𝑈; 𝜀 = ̇ + (5.29)

Substituting q and �̇� from (5.23) and (5.24) in (5.29) gives𝜀 = 𝐿𝐶𝜔 𝑞 sin (𝜔 𝑡 + 𝜑 ) + 𝑞 cos (𝜔 𝑡 + 𝜑 )2𝐶 (5.30)

Since by definition 𝜔  = 1/ LC, the𝜀 = 𝑞 [sin (𝜔 𝑡 + 𝜑 ) + cos (𝜔 𝑡 + 𝜑 )]2𝐶 (5.31)

Total energy of small oscillations in a potential field𝜀 = 𝑞2𝐶 (5.32)

In other words, the total energy of an oscillating non-dissipative
conservative system is proportional to the square of the amplitude of the
system's deviation qm from the state of equilibrium.
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5.1.2. Natural damped oscillations

In the case of mechanical oscillations, for which energy
dissipation is caused by friction, we can assume that the frictional force
is proportional to speed𝐹 = −𝑓�̇� (5.33)

where f is the generalized coefficient of friction.
The equation of motion in the absence of external forces takes

the form

m�̈�+fx+kx=0 (5.34)

or �̈� + 𝑓𝑚 �̇� + 𝑘𝑚 𝑥 = 0 (5.35)

For any form of motion, the equation of oscillations of the type in
question can be obtained by generalizing equation (5.35)�̈� + 𝑅𝐿 �̇� + 1𝐿𝐶 𝑞 = 0 (5.36)

where R is the value of the generalized resistance, characterizing the
degree of dissipation of the system, equivalent to the friction coefficient
f. The quantity R is often called the active or dissipative resistance of the
system. If we denote 𝑅𝐿 = 2𝛿 (5.37)1𝐿𝐶 = 𝜔 (5.38)

then the equation of oscillation takes the form�̈� + 2𝛿�̇� + 𝜔 𝑞 = 0 (5.39)
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This equation, as stated above, has the following solution𝑞 = 𝐶 𝑒 + 𝐶 𝑒 (5.40)

where r1,2 are roots of the characteristic equation𝑟 + 2𝛿𝑟 + 𝜔 = 0 (5.41)

and its solutions𝑟 , = −𝛿 ± 𝛿 − 𝜔  (5.42)

C1 and C2 are integration constants, which are found taking into
account the initial conditions.

Let us denote the quantities 𝜔𝐿 = 𝑋  и = 𝑋 . These
quantities have the dimension and meaning of resistance. However,
unlike the active resistance, which characterizes the degree of energy
dissipation, the XL and XC resistances determine the phase of oscillation
and the degree of its shift. That is why they are called reactive.  If  we
assume that when t = t0 =  0,  q  =  q0, and �̇�0 = 0 when 𝛿 < 𝜔0 (𝑅 <2 𝑋 𝑋 ), then𝑞 = 𝐴 𝑒 cos(𝜔 𝑡 + 𝜑 ) (5.43)

where A0 is the initial amplitude of oscillations;𝜑  is the initial phase of the oscillations;𝜔 is the natural frequency of the dissipative system.
At the same time𝐴 = 𝑞1 − 𝑅 𝐶4𝐿  

(5.44)

𝜑 = tan 4𝐿𝑅 𝐶 − 1 (5.45)
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𝛿 = 𝑅2𝐿 (5.46)

𝜔 = 1𝐿𝐶 − 𝑅4𝐿 ,  𝜔 = 𝜔 − 𝛿 (5.47)

In the case when 𝛿 > 𝜔  (𝑅 > 𝜔 𝑋 𝑋 , the oscillatory process
of the dissipative system degenerates into an aperiodic process (see
Appendix 2) and𝑞 = 𝐴 𝑒 𝑠ℎ(𝜔𝑡 + 𝜑 ) (5.48)

It follows directly from equations (5.43) and (5.46) that the
quantity 𝐴 = 𝐴 𝑒 (5.49)

is the amplitude of the oscillations. Thus, the attenuation of the
amplitude is higher the greater the dissipation and the smaller the inertia
of the system (the value L). If the active resistance is very large compared
to the reactive resistance, the process becomes aperiodic. In an oscillatory
damping process, the amplitude decreases exponentially 𝑒  (Fig. 5.2)

Figure 5.2.

q

0
ωt



17

The dotted lines in the figure are envelopes and represent the
exponential law of attenuation of the amplitude of oscillations.

The damping intensity of an oscillatory process is defined as the
amount of attenuation of the amplitude in one period. This quantity is
usually characterized by the ratio of the amplitude A(t) at a given time to
the amplitude A(t + T) through the period of oscillation T. However, in
order to increase the clarity of the specified characteristic of damping, we
do not consider the ratio itself, but its natural logarithm.

The attenuation characteristic, therefore, is called the logarithmic
decrement of damping χ.

It is obvious that𝜒 = ln 𝐴(𝑡)𝐴(𝑡 + 𝑇) = ln 𝑒𝑒 ( ) 𝛿𝑇 (5.50)

From (5.50) we see that the logarithmic decrement of damping is
higher the greater the dissipation and period of oscillation.

Another characteristic of the intensity of the damping of
oscillations of the system is the relaxation time, equal to the time interval
τ , during which the amplitude of oscillations decreases by e times. Since𝑒𝑒 ( ) = 𝑒 (5.51)

Then 𝛿𝜏 = 1;  𝜏 = 1𝛿 (5.52)

It is, in this way,𝐴(𝑡) = 𝐴 𝑒 (5.53)

As an example of a system performing non-mechanical natural
damped oscillations, let us consider an oscillating circuit. It represents
an electric circuit (Fig. 5.3), consisting of a series-connected solenoid 1,
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in the form of an inductance coil L, and a capacitor 2 with capacity C.
Each of these elements has an active resistance, on which energy
dissipation occurs. To simplify things, let's assume that the active
resistances of the circuit elements are zero, and their actual active
resistance R is concentrated in a separate element, resistor 3, included in
series with the other elements in the circuit. Let us also assume that the
circuit capacitor is charged from the source of e.m.f. 4 to the value q and
at the initial moment t = t0 it is switched off by switch 5.

Figure 5.
At the initial moment, the energy of the circuit is completely

concentrated in the capacitor 2 and is the energy of the electric field
intensity 𝐸 between its plates. After disconnecting the source of emf 4
negative charges under the action of the electric field (potential
difference) move from the bottom plate of the capacitor to the top plate,
creating a current i in the circuit. A magnetic field of intensity 𝐻 arises
around conductor 1 with inductance L. This field creates a magnetic flux𝛷 in the inductance that is proportional to the current i𝛷 =Li (5.54)

As charges move from one capacitor plate to another, the
capacitor is recharged and the current, having passed through the
maximum, becomes zero. The magnetic flux passes along the axis of the
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inductor coil and is concentrated inside it. The magnetic flux in the
connecting wires due to its smallness can be neglected. Since the current
i is continuously changing, then according to (5.54) the magnetic flux
changes accordingly 𝑑Φ𝑑𝑡 = 𝐿 𝑑𝑖𝑑𝑡 (5.55)

Variable magnetic flux in the coil, in turn, leads to the appearance
of self-induction current i1, which, according to Lenz's law, is directed
against the main current i, and counteracts its increase. As the current i
increases, the capacitor discharges, and the maximum electric field
strength 𝐸 in the initial state decreases to zero. At the same time, the
magnetic field 𝐻 in the inductor coil grows, and when the electric field
strength decreases to zero, 𝐸 = 0, the strength 𝐻 = 𝐻 . This means that
the energy of the electric field is completely converted into the energy of
the magnetic field. The current i, having reached the maximum value,
begins to decrease, recharging the capacitor. An electric field of the
opposite direction is established between the plates of the capacitor. As a
result, the current and magnetic field strength decreases to zero, and the
electric field strength increases to a negative maximum. As a result of the
conversion of magnetic energy into electrical energy, the process reverses
its direction and goes to the initial state. Then it is repeated all over again.
Thus, the source of the oscillatory process in the oscillating circuit is the
oscillatory motion of electrons in the conductors of the electric circuit,
which excite periodic changes in the electric and magnetic field strengths
of the circuit and lead to the appearance of electromagnetic oscillations
(see section 4.2.3). In the case when𝑅 ≪ 𝑋𝑅 ≪ 𝑋 (5.56)

dissipation of electromagnetic energy is insignificant and
electromagnetic oscillations in the circuit can continue long enough,
gradually damping. If ideally we assume that 𝑅 ≈ 0 then the oscillations
obey equation (5.5), i.e. they are harmonic and undamped.
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Electromagnetic oscillations in a real oscillating circuit (R ≠ 0)
occur with dissipation of electromagnetic energy due to its conversion
into thermal energy and are natural damped oscillations. They obey
equation (5.36) and its solution (5.40) taking into account (5.37) and
(5.38), provided that 𝑅 < 2 𝑋 𝑋 (5.57)

5.1.3. Forced oscillations

The equation of forced oscillations can be obtained by adding to
the homogeneous differential equation (5.34) or (5.36) of natural
oscillations the right part in the form of a generalized periodic external
force F(t). Then the equation takes the form�̈� + 𝑅𝐿 �̇� + 1𝐿𝐶 𝑞 = 1𝐿 𝐹(𝑡) (5.58)

Equation (5.58) is a linear inhomogeneous differential equation of
the second order with constant coefficients. According to the theory of
differential equations (Appendix 2), the solution of equation (5.58) has
the form

q = q1 + q2, (5.59)

where q1 is the general solution of the homogeneous equation according
to (5.43);
q2 is a partial solution of an inhomogeneous equation.

Let F(t) be a harmonic function, i.e.𝐹(𝑡) = 𝐹 cos Ω𝑡, (5.60)

where Ω is the oscillation frequency of the external driving force.
As a result, the solution of equation (5.58) for the steady state

takes the form 𝑞 = 𝑞 = 𝐴 cos(Ω𝑡 + 𝜑 ),
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where A and 𝜑  are arbitrary constants.
Substituting this solution into (5.58) gives𝐴 = 𝐹𝐿 (𝜔 − 𝛺 ) + 4𝛿 𝛺   

𝜑 = tan 2𝛿Ω𝜔 − Ω
From the equation 𝑑𝐴𝑑Ω = 0

it follows that the extreme value of the frequency 0 of the driving
force F0, at which the amplitude of forced oscillations takes a maximum
value, is Ω = 𝜔 − 2𝛿 (5.61)

Maximum amplitude corresponding to frequency 0𝐴 = 𝐹2𝐿𝛿𝜔 (5.62)

A comparison of (5.62) and (5.47) shows that the frequency 0 is
slightly less than the natural frequency of the dissipative system.

The phenomenon of a sharp increase in the amplitude of forced
oscillations of the system, when the cyclic frequency of the driving force
approaches a value roughly equal to the natural frequency of the system,
is called resonance, and the frequency0 is called the resonance
frequency.

The curves of dependence of the amplitude and phase of forced
oscillations for different values of δ on the cyclic frequency  of the
driving force are called resonance curves (Fig. 5.4 a and b).
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If a source of emf is included in an oscillating circuit, the value of
which varies according to the harmonic law𝐸 = 𝐸 sin Ω (5.63)

then the forced oscillations of frequency  will occur in the circuit.

Figure 5.4.
The current in the circuit can be found from the relation𝐼 = 𝑑𝑞𝑑𝑡 (5.64)

Substitution gives for the current amplitude I𝐼 = 𝐸 1𝑅 + ( 1Ω𝐶 − Ω𝐿) (5.65)

Where

𝑍 = 𝑅 + ( 1Ω𝐶 − Ω𝐿) (5.66)

is the value of the total circuit resistance, called impedance.
At resonance, according to (5.62) and (5.64),

A

A0
0=ω

0

φ𝜋2
− 𝜋2
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𝐼 = 𝐸 1𝑅 (5.67)

This means that under conditions of resonance, the amplitude of
the current in the circuit is as large as possible, and1Ω𝐶 = Ω𝐿 (5.68)

Since ω0- φ0, (5.68) takes the form XC = XL.

5.1.4. Vector form of harmonic oscillations

Let a harmonic oscillation be given in the form𝑞 = 𝐴 cos(𝜔𝑡 + 𝜑 ) (5.69)

From an arbitrarily chosen point O in the plane, at an angle φ0 to
the horizontal axis Oq, we lay out a vector 𝑂𝐴 whose modulus is equal
to the amplitude of the vibrations A. (Fig. 5.5)

The obtained vector 𝑂𝐴 is rotated with angular velocity ω
counterclockwise. In time t, the end of the vector 𝑂𝐴 will make an angle
equal to ωt and take the position of OA1 so  that  at  time t  it  forms  the
following angle with the horizontal axis𝜑 =  𝜔𝑡 + 𝜑 (5.70)

that is equal to the phase of the oscillations. As can be seen in Fig. 5.5,
the projection of vector 𝑂𝐴1 on the horizontal axis is𝑞(𝑡) = 𝑂𝐴 cos 𝜑 = 𝐴 cos(𝜔𝑡 + 𝜑 ) (5.71)
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Figure 5.5.

Thus, as the vector 𝑂𝐴 rotates, its projection on the horizontal axis
oscillates according to a given initial harmonic law.

From this we conclude that a harmonic oscillation in the general
case can be given graphically on the plane in the form of a vector, whose
length is equal to the amplitude of oscillations, and its direction at a given
time forms with the horizontal axis an angle equal to the phase of
oscillations.

Such a representation of harmonic oscillations in the form of
vectors rotating with cyclic frequency (Fig.5.5) is called a vector
diagram.

5.1.5. Addition of harmonic oscillations

Let us assume that it is necessary to combine two harmonic
oscillations x1 and x2 made in the same direction along the horizontal axis
Ox with frequency ω, with amplitudes A1 and A2 and initial phases φ01

and φ02, 𝑥 = 𝐴 cos (𝜔𝑡 + 𝜑 )𝑥 = 𝐴 cos (𝜔𝑡 + 𝜑 ) (5.72)

Let's represent these oscillations with the vector diagram of
vectors 𝑂𝐴1 and 𝑂𝐴2 (Fig. 5.6).

ωt

φ0

φ

O

A1

A

q

q(t)
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Figure 5.6
Since both oscillations occur with the same cyclic frequency,

when added together they are represented by vectors inclined to the
horizontal axis at angles φ01 and φ02.

The resulting vector 𝑂𝐴 is then rotated by the angle ωt (not shown
in the figure). The vector diagram shows that

x = x1 + x2 = A1cos(ωt + φ01) + A2cos(ωt + φ02) = Acos(ωt + φ0)
The  values  of  A  and  φ0 of the resulting oscillation can be

determined from the vector diagram. The direction of the vector 𝑂𝐴 is
determined by the parallelogram rule (see Fig. 5.6), and its length by the
cosine theorem for the triangle OAA1 (Appendix 1).

OA2= OA1
2+ OA2

2 – 2OA1� OA2cos∠OA1A (5.73)

(AA1 = OA2 as opposite sides of a parallelogram). As can be
seen from Fig. 5.6, ∠ОA1A = π- . ∠АА1A3,∠АА1А3 = ∠( φ02 - φ01)
as angles with mutually parallel sides. Therefore

OA2 = OA1
2 + OA2

2 - 2OA1OA2 cos[π - ( φ02 - φ01)] (5.74)

According to the formulas for the reduction

A

φ0

φ02

O
A1

φ01

A3

x2x1 x

A2
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cos(π - α) = - cosα.
Thus, it follows from (5.74) that

A2 = A1
2 + A2

2 + 2А1А2 cos( φ02 - φ01) (5.75)

Angle φ0 can be found from the triangle OAx, namelytan 𝜑 = 𝐴𝑥𝑂𝑥 (5.76)

Fig. 5.6 shows that𝐴𝑥 = 𝐴 𝑥 + 𝐴 𝑥𝑂𝑥 = 𝑥 + 𝑥 (5.77)

On the other side,𝐴 𝑥 = 𝐴 sin 𝜑  ; 𝑥 = 𝐴 cos 𝜑   𝐴 𝑥 = 𝐴 sin 𝜑  ; 𝑥 = 𝐴 cos 𝜑   (5.78)

Substituting (5.78) into (5.76) givestan 𝜑 = 𝐴 sin 𝜑 + 𝐴 sin 𝜑𝐴 cos 𝜑 + 𝐴 cos 𝜑 (5.79)

Let us consider, using relations (5.75) and (5.79), particular cases
of addition of unidirectional harmonic oscillations. If the phase difference
of such oscillationsΔ𝜑 = 𝜑 − 𝜑 = 2𝜋𝑘, where k = 0,1,2...,
then because cos 2𝜋𝑘 = 1,
it follows from (5.75) that

A2=(A1 + A2)2

and

A=A1 + A2 (5.80)
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If the phase difference

then
A2=(A1 + A2)2

and

A = |A2 – A1| (5.81)

It follows from (5.80) and (5.81) that in the first case the
oscillations, adding up, strengthen, and in the second case they, on the
contrary, mutually weaken.

When an oscillation is non-harmonic, it can, as mentioned above,
be represented as a sum of harmonic oscillations of multiple frequency
(Fourier series). Each of these oscillations can also be represented by
vectors that rotate at different angular velocities.

Harmonic oscillations with different angular velocity can also be
added using a vector diagram. Each such oscillation at a given time can
be associated with a vector, the direction of which in the general case is
a function of time. The amplitude of the resulting oscillation is also a
function of time.

Moreover, the time also determines the magnitude ofΔ𝜑 = 𝜑 − 𝜑
The resulting vector in this case will rotate with a variable speed.

For these reasons, it is a non-harmonic oscillation. Finding the resultant
oscillation in the general case is associated with serious mathematical
difficulties. Such an oscillation cannot always be represented by a simple
enough formula. Let us consider a simpler special case of addition of two
harmonic oscillations with the same amplitudes and initial phases equal
to zero and different, but quite close, frequencies ω and ω+Δω. In the case
where Δ𝜔 ≪ 𝜔 (5.82)

these oscillations can be written in the form
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𝑥 = 𝐴 cos 𝜔𝑡𝑥 = 𝐴 cos(𝜔 + Δ𝜔)  (5.83)

Let's add x1 and x2 analytically, without resorting to a vector
diagram

x = x1 + x2 = Acosωt + Acos(ω + Δω)t = A[cosωt + cos(ω +
Δω)t]

Let us apply the formula known from trigonometry for the
addition of cosines𝑥 = 2𝐴 cos Δ𝜔2 𝑡 cos 𝜔 + Δ𝜔2 𝑡 (5.84)

Taking into account (5.82), the total oscillation is finally𝑥 = 2𝐴 cos Δ𝜔2 𝑡 cos 𝜔𝑡 (5.85)

The resulting oscillation can be conventionally considered
harmonic with a variable amplitude changing according to the harmonic
law with a frequency Δω /2.

Equation (5.85) describes the phenomenon of so-called beatings
of two oscillations close in frequency. Physically, beatings are explained
by the fact that one oscillation is constantly lagging behind the other, and
the total amplitude increases when the phases coincide, and decreases
when they do not coincide.

The oscillation graph at beating is shown in Fig. 5.7.
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Figure 5.7
* Let us now consider the rule of addition of harmonic oscillations

occurring in different directions. Suppose, for example, it is necessary to
add two oscillations of the same frequency, which are made in mutually
perpendicular directions. Let us assume that the oscillations occur along
the Ox and Oy axes of the Cartesian coordinate system. Let us assume
that the phase shift of the oscillations Δφ = φ0. At the same time𝑥 = 𝐴 cos 𝜔𝑡 , 𝑦 = 𝐵 cos(𝜔𝑡 + 𝜑 ) (5.87)

From the first equation we findcos 𝜔𝑡 = ,

therefore,

sin 𝜔𝑡 = ± 1 − 𝑥𝐵
Let us further represent the second equation (5.87) taking into

account the rules of trigonometry in the form𝑦 = 𝐵 cos(𝜔𝑡 + 𝜑 ) = 𝐵[cos 𝜔𝑡 cos 𝜑 − sin 𝜔𝑡 sin 𝜑 ],

-2A

2A

t

x
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𝑦 = 𝐵 𝑥𝐵 cos 𝜑 ± 1 − 𝑥𝐴  sin 𝜑   (5.88)

from which 𝑦𝐵 = 𝑥𝐴 cos 𝜑 ± 1 − 𝑥𝐴 sin 𝜑  
or𝑦𝐵 = 𝑥𝐴 cos 𝜑 + 1 − 𝑥𝐴 sin 𝜑 ± 2 𝑥𝐴 1 − 𝑥𝐴 sin 𝜑 cos 𝜑 =

= 𝑥𝐴 cos 2𝜑 + 𝑥𝐴 1 − 𝑥𝐴 sin 2𝜑 + sin 𝜑  
Let's add to both parts , then𝑦𝐵 + 𝑥𝐴 = 𝑥𝐴 (1 + cos 2𝜑 ) + 𝑥𝐴 1 − 𝑥𝐴 sin 2𝜑 + sin 𝜑 =

= 2 𝑥𝐴 cos 𝜑 𝑥𝐴 cos 𝜑 + 1 − 𝑥𝐴  sin 𝜑 + sin 𝜑  
Since the expression in parentheses is equal to , (see 5.88), then𝑦𝐵 + 𝑥𝐴 − 2 𝑥𝑦𝐴𝐵 cos 𝜑 = sin 𝜑 (5.89)

Equation (5.89) describes the trajectory of the resultant
oscillation point.

In the case where
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φ0 = nπ, where n = 0, 1, 2, ...
equation (5.89) takes the form𝑥𝐴 + 𝑦𝐵 − (−1) 2𝑥𝑦𝐴𝐵 = 0 (5.90)

For even n (n = 2 k), we obtain𝑥𝐴 − 𝑦𝐵 = 0
or 𝑦 = 𝐵𝐴 𝑥 (5.91)

At odd n 𝑥𝐴 + 𝑦𝐵 = 0
or 𝑦 = − 𝐵𝐴 𝑥 (5.92)

Equations (5.91) and (5.92) are equations of lines passing through
the origin at an angle ± π / 4. In the case where𝜑 = ±(1 + 2𝜋) ,𝑥𝐴 + 𝑦𝐵 = 1 (5.93)

Equation (5.93) is the canonical equation of an ellipse symmetric
about the origin (Fig. 5.8a). In all other cases, equation (5.89) is also the
equation of a family of ellipses whose semi-axes are inclined to the
coordinate axes at different angles determined by the angle φ0 (see Fig.
5.8 b). If A=B, the trajectories of ellipses degenerate into circles. When
mutually perpendicular oscillations occur with different frequencies, the
trajectory of the resulting oscillation point has a rather complex form.
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Figure 5.8.
The trajectory of the point, describing the resulting oscillation, for

example, in the case when the frequencies of the folded oscillations are
multiples of 2, has the form shown in Fig. 5.9 (accepted without proof)

Figure 5.9.
The trajectories of the point describing the resulting oscillations

are called Lissajous curves. Lissajous curves can be obtained on the
oscilloscope screen by applying electric signals, corresponding to the
added oscillations, to the opposite deflecting plates.

5.1.6. Linear oscillatory systems

When considering harmonic oscillations, it is advisable to use the
notion of phase space and phase trajectories introduced in Section 2.5. In
the case of oscillating systems with one degree of freedom, the phase
space turns into a phase plane. In this plane, in the Cartesian coordinate
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system, the value of the dynamic variable characterizing the oscillating
system, for example q(t), is plotted along the horizontal axis and its time
derivative is plotted along the ordinate axis �̇�(𝑡). In this case, the
evolution of the system is described by a phase trajectory �̇� = 𝑓[𝑞(𝑡)]

The geometric picture of the mutual arrangement of phase
trajectories on the phase plane forms the phase portrait of the oscillatory
process.

Let us first consider the phase portrait of free (natural) undamped
oscillations, which, as mentioned above, are described by the equations
of motion of the following form�̈�𝑥 = −𝑘𝑥 (5.94)

Let us multiply both parts of the equation by �̇�.
Then 𝑑𝑑𝑡 𝑚𝑤 �̇� + 𝑑𝑑𝑡 𝑘𝑤2 𝑥 = 0 (5.95)

By integrating the equation (5.95), we obtain𝑚2 𝑥 ̇ + 𝑘2 𝑥 = 𝑐𝑜𝑠𝑛𝑡 (5.96)

Since the left part of equation (5.96) contains the sum of kinetic
and potential energy of the oscillating system, the integration constant in
the right part of the equation has the meaning of the total energy of the
system 𝜀, i.e. 𝑚𝑥2 + 𝑘𝑥2 = 𝜀 (5.97)

Let us denote the quantity �̇� by y, then𝑚𝑦2𝜀 + 𝑘𝑥2𝜀 = 1 (5.98)

Let us introduce the values a and b such that
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= 𝑎 ; = 𝑏
then the equation (5.89) takes the form+ =1 (5.99)

Thus, the equation of the oscillatory process is geometrically
expressed by the equation of an ellipse. Varying the value of energy 𝜺
leads to a family of phase trajectories, that is, the phase portrait of the
considered process (Fig. 5.10)

Figure 5.10.
It is not hard to see that𝑏𝑎 = 𝑘𝑚 = 𝜔

where bi and ai are the semi-axes of the family of ellipses.
The arrows on the phase trajectories indicate the direction of

motion of the current point [𝑥(𝑡), �̇�(𝑡)] over time. This point is called the
representation point.

It can be shown (we will accept this without proof) that the phase
trajectories of all oscillatory (periodic) processes are always closed
curves.
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This rule allows us to distinguish periodic processes from
aperiodic ones. In particular, it is used to predict the behavior of the
system by the type of the differential equation of motion describing it
and, accordingly, the phase space and phase portrait.

The point with coordinates (0,0) is a special point. It characterizes
the equilibrium state of the system and can be regarded as a phase
trajectory of the equilibrium state.

The special point in the vicinity of which all phase trajectories
form closed lines is called the center. In this sense, the equilibrium state
of the system performing harmonic oscillations is a special point of the
"Center" type.

Let us divide both parts of equation (5.97) by 𝜔 𝜀 and denote𝑦 = �̇�𝜔
then 𝑦2𝜀𝑚 + 𝑥2𝜔 𝜀𝑘 = 1𝜔 (5.100)

Since 2𝜔 𝜀𝑘 = 2 𝑘𝑚 𝜀𝑘 = 2𝜀𝑘𝑚
then when denoting 𝐴 = 2𝜀𝑘

We will get
y2 +x2 = A2 (5.101)

Since 𝜀 = 𝑘𝐴2
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a is the amplitude of oscillations, then equation (5.101) depicts a family

of circles with radius 𝐴 =
This means that oscillations with the same amplitudes but

different phases correspond to the motion of the representation point on
the same circle of radius A. At any given moment this circle represents
points 1 and 2 of two oscillations with the same amplitude and phase shift
Δω=φ2-φ1, and the angle of phase shift Δω is equal to the angle between
the position vectors of points 1 and 2

Figure 5.11
In the case of a damped oscillatory process, it is quite difficult to

obtain an equation describing the phase trajectory. Therefore, let us give
examples of phase trajectories of an aperiodic process (Fig. 5.12a) and a
periodic process (Fig. 5.12b) without their calculation. As can be seen
from Fig. 5.12, the phase trajectories of these processes are depicted by
open lines

2

𝑦𝜔
1

x

A
Δω

O
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a b

Figure 5.12.

5.1.7. Non-linear oscillatory systems

Linear oscillatory processes are an idealization of the actual
reality and approximate it under conditions of small perturbations. Linear
processes are a consequence of the superposition principle, according to
which it is assumed that if several forces act on a system, then the
behavior of the system under the action of each force does not depend on
the action of other forces, and the result of the behavior of the system
under the action of other forces is obtained by simple addition of the
results of each force. In reality, on the contrary, the behavior of one
element of a system under the action of a given force significantly affects
the behavior of other elements. In this case, the behavior of the whole
system is described by nonlinear differential equations.
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Figure 5.13.
Nonlinear oscillatory systems perform rather complex non-

harmonic oscillations. These oscillations occur even in the simplest
system of a mathematical pendulum deflected from equilibrium by a large
enough angle. Suppose, for example, a mathematical pendulum of length
l with mass m (Fig. 5.13). Let us bring it out of the equilibrium position
by deflecting it by a sufficiently large angle φ, which will cause it to move
along an arc of a circle around the axis Oz. The following symbols are
used in the figure:�⃗� = 𝑚�⃗� is the force of gravity acting on the pendulum (load);𝑇 is the force of the tension of the pendulum string;𝜔 is the vector of the angular velocity of the load;𝜀 is the acceleration vector;𝑀⃗ is the vector of the momentum of gravity of the load with
respect to the axis Oz

It was shown above that the equation of rotational motion of an
absolutely solid body (see Section 2.7.10), in this case a ball of a
mathematical pendulum, has the form -*𝑀 = 𝐼 𝜀 (5.102)
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where Iz is the moment of inertia of the ball as it moves around the axis.
According to the definition, the moment of force is𝑀 = 𝑙, 𝑚�⃗� (5.103)

from which 𝑀 = 𝑚𝑔𝑙 sin 𝜑
Further 𝜔 = 𝑑𝜔𝑑𝑡 �⃗� (5.104)

where �⃗� is the unit vector of the Oz axis.
Therefore 𝜀 = 𝑑 𝜑𝑑𝑡 �⃗� (5.105)𝐼 = 𝑚𝑙 (5.106)

Projecting equation (5.102) onto the Oz axis gives𝑚𝑔𝑙 sin 𝜑 = −𝑚𝑙 𝑑 𝜑𝑑𝑡 (5.107)

from which �̈� + 𝑔𝑙 sin 𝜑 = 0 (5.108)

Since for a mathematical pendulum= 𝜔 ,

then finally the equation of oscillations of the pendulum�̈� + 𝜔 sin 𝜑 = 0 (5.109)

(5.109) is a second-order nonlinear differential equation in which
the dependence sinφ =  f  (t) requires additional conditions. There is,
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however, a simpler approximate method, which consists in decomposing
the function sinφ into a series of powers of φ and limiting by some criteria
the number of members of this series.

In this casesin 𝜑 ≅ 𝜑 − 𝜑3! + 𝜑5! − ⋯ + (−1) 𝜑(2𝑛 + 1)! (5.110)

Limiting ourselves to two terms of a series with relatively small
values of φ, we can write equation (5.109) in the form�̈� + 𝜔 𝜑 − 𝜑6 ≈ 0 (5.111)

The nonlinear equation (5.111) is solvable in principle, although
its solution is associated with great mathematical difficulties. It can, in
particular, be solved by the method of successive approximations. As a
first approximation, let us assume that the third term of the equation can
be neglected, then we obtain𝜑 + 𝜔 𝜑 ≈ 0

The solution to this linear equation is a well-known harmonic
function 𝜑 =  𝜑 sin 𝜔𝑡 (5.112)

where φ0 is the amplitude of oscillations.
In the second approximation, we look for the solution of

equation (5.111) in the form 𝜑 ≈ 𝜑 , then−𝜔 𝜑 sin 𝜔𝑡 + 𝜔 𝜑 sin 𝜔𝑡 − 𝜑 sin 𝜔𝑡6 = 0
Since sin 𝜔𝑡 = − 34 sin 𝜔𝑡 − 14 sin 3𝜔𝑡

then
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𝜔 − 𝜔 − 𝜔 𝜑8 𝜑 sin 𝜔𝑡 + 𝜔 𝜑8 sin 3𝜔𝑡 ≅ 0
This equality, however, is not realized under any conditions due

to the presence of an odd harmonic 𝑠𝑖𝑛3𝜔𝑡, so in the third
approximation we look for a solution in the form𝜑 ≅ 𝜑 sin 𝜔𝑡 + 𝜀𝜑 sin 3𝜔𝑡 (5.113)

However, cubing p3 leads to the appearance of odd harmonics of
even higher order, etc. By continuing to adjust the solution with higher
and higher approximations, we finally obtain a solution that is close to
the true solution. In doing so, it turns out that𝜔 ≈ 𝜔 (1 − 𝜑16) (5.114)

It follows from (5.114) that the frequency of oscillations of a
nonlinear system is less than the natural frequency of a linear system and,
in addition, depends not only on the properties of the system, but also on
the amplitude of oscillations 𝜑 . The greater the amplitude, the lower the
frequency. From the approximate solution (5.114) we see that it is non-
harmonic or, as they say, anharmonic.

Finally, it is quite obvious that the principle of superposition loses
its meaning for nonlinear oscillations.

Another practically very important example of nonlinear
oscillations is self-oscillations. The system itself, in which self-
oscillations occur, is dissipative, i.e. there are continuous losses of
oscillatory energy. Meanwhile, despite the autonomy of the system, it
maintains undamped oscillations in automatic mode due to the built-in
source of energy, which compensates losses.

Obviously, the energy supply to the system should not be
constant, but synchronized with the cycle of oscillations. In other words,
the embedded energy source must also be an oscillating system with
oscillations of the same frequency as the main system. This is achieved
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by means of a so-called feedback device with an appropriate valve that
synchronizes the power supply.

Examples of self-oscillating systems are sinusoidal signal
generators, mechanical clocks, internal combustion engines, the heart of
biological systems and many others.

For example, in mechanical watches, the built-in source of energy
is a spiral spring, the valve is an anchor mechanism, and the feedback is
provided through a system of gears. In a sinusoidal signal generator the
built-in energy source is an electric battery, the feedback is provided by
inductances or capacitances, and the valve is an appropriate
semiconductor device (e.g. thyristor), etc.

5.1.8. Complex form of harmonic oscillations

As is known (Appendix 1), if in the Cartesian coordinate system
we plot real numbers on the horizontal axis Ox and imaginary numbers
on the vertical axis, any complex number𝑐̂ = 𝑎 + 𝑗𝑏
can be represented by a point in the plane with coordinates a and b, equal
respectively to the real and imaginary parts of the complex number.

In this case 𝑎 = 𝑅𝑒𝑐̂; 𝑏 = 𝐼𝑛�̂�
On the other hand, any point in the plane (i.e. a given complex

number) can be matched with a vector ОА⃗, coming from the origin (Fig.
5.14).

Figure 5.14.
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Point A in the picture represents the complex number �̂� = 𝑎 + 𝑗𝑏.
As can be seen from the figure the vector ОА⃗, coordinates are respectivelya =  OA cosφb =  OA sinφ (5.115)

It is, in this way,�̂� = 𝑂𝐴(cos 𝜑 + 𝑗 sin 𝜑) (5.116)

On the other hand, according to the Euler formula (Appendix 2)cos 𝜑 + 𝑗 sin 𝜑 = 𝑒 (5.117)

where ejφ is the complex exponent.
It is, in this way, �̂� = 𝑂𝐴𝑒  

where OA is the vector length 𝑂𝐴 = √𝑎 + 𝑏 ,
and the angle φ is defined (see Fig. 5.14) by the formula𝜑 = tan 𝑏𝑎 (5.118)

From (5.117) we see that the modulus of the complex number𝑒 = 𝑐𝑜𝑠 𝜑 + 𝑠𝑖𝑛 𝜑 = 1 
Since a harmonic oscillation has the form𝑞 = 𝐴 cos(𝜔𝑡 + 𝜑 ), 

then it can always be treated as the real part of the complex number с for
which the amplitude is equal to the absolute value |�̂�| = 𝑂𝐴, and the
phase

ωt + φ0 = φ.
In other words, if a harmonic oscillation is given

q = Acos(ωt + φ0),
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then in the complex form it has the following form
q = ReAej(ωt + φ0)

Since in the vector representation of the oscillation only the initial
phase is taken into account, usually an oscillation of the form

q = Acos(ωt + φ0)
is presented in complex form as𝑞 = 𝐴𝑒
and as a result 𝑞 = 𝑅𝑒(𝑞 ∙ 𝑒 ) (5.119)

Let us apply a complex representation of harmonic oscillations to
the study of forced oscillations. To do this, we turn from the value of q to
the complex quantity of 𝑞. When obtaining the final result of the
calculations, we return to the original non-complex quantities by formula
(5.119). Let's write down the initial equation of forced oscillations in the
complex form �̈� + 2𝛿�̇� + 𝜔 𝑞 = 𝐹𝐿 𝑒 (5.120)

We find its solution as the sum of the solutions of the
homogeneous equation and the partial non-homogeneous one. In the
steady-state mode, the natural oscillations are damped and do not affect
the overall result. Therefore, the desired solution is reduced only to
finding a partial solution of an non-homogeneous equation. We look for
it as the right part of (5.120) in the complex form, namely𝑞 = 𝐴𝑒 (5.121)

where 𝐴 is the complex amplitude.
* In the general case𝐴 = 𝜌𝑒 (5.122)

where ρ is the absolute value of the complex number 𝑞
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It follows from (5.121) that�̇� = 𝐴𝑗Ω𝑒�̈� = 𝐴𝑗Ω 𝑒
Substitution gives the expression−𝐴Ω 𝑒 + 2𝛿𝐴𝑗Ω𝑒 + 𝜔 𝐴𝑒 = 𝐹𝐿 𝑒 (5.123)

Reducing (5.123) by the common factor 𝑒 , we obtain that𝐴 = 𝐹[(𝜔 − 𝛺 ) + 2𝑗𝛿𝛺]𝐿 (5.124)

Let us express (5.124) as a complex quantity𝐴 = 𝑎 + 𝑗𝑏 = 𝑅𝑒𝐴 + 𝑗𝐼𝑚𝐴
To do this, multiply the numerator and denominator of expression

(5.124) by the complex conjugate of the denominator[(𝜔 − 𝛺 ) + 2𝑗𝛿𝛺], 
then 𝐴 = 𝐹 [(𝜔 − 𝛺 ) + 2𝑗𝛿𝛺)][(𝜔 − 𝛺 ) + 4𝑗𝛿 𝛺 ]𝐿 
from which𝑅𝑒𝐴 = 𝐹 (𝜔 − Ω )𝐿[(𝜔 − Ω ) + 4𝑗𝛿 Ω ] ; 𝐼𝑚𝐴 = − 2𝐹 𝛿Ω𝐿[(𝜔 − Ω ) + 4𝑗𝛿 Ω ]

It is, in this way,𝜌 = (𝑅𝑒𝐴) + (𝐼𝑚𝐴)= 𝐹𝐿 (𝜔 − 𝛺 ) + +4𝑗𝛿 𝛺  (5.125)

𝜑 = − tan 2𝛿Ω𝜔 − Ω (5.126)
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Finally

𝑞 = 𝐹𝐿(𝜔 − Ω ) + 4𝛿 Ω cos Ω𝑡
+ tan 2𝛿Ω𝜔 − Ω (5.127)

For electromagnetic oscillations in a circuit with external emf
Ec0 sint 𝐹𝐿 = 𝐸𝑐 ;  𝜌 = 𝐼
after substituting the values 𝜔  и 𝛿𝐼 = 𝐸𝑐 1𝑅 + Ω𝐿 − 1Ω𝐶 (5.128)

where, as has been shown, the impedance Z is

𝑍 = 𝑅 + Ω𝐿 − 1Ω𝐶 (5.129)

or 𝑍 = 𝑅 + (𝑋 − 𝑋 ) (5.130)

Let us transform (5.124) and write it in the form𝐴 = 𝐹𝑗Ω 𝑗ΩL − 1ΩC + 𝑅
It is easy to see that the value in square brackets has the dimension

of resistance and can be regarded as a complex impedance𝑍 = 𝑅 + 𝑗(𝑋 − 𝑋 ) (5.131)
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In other words, the reactive resistances in complex form have the
form 𝑋 = 𝑗ΩL = ΩLe (5.132)𝑋 = 𝑗 1ΩC = 1ΩC e (5.133)

5.2. Alternating electric current

If we include a source of periodically varying EMF into the
oscillating circuit (Fig. 5.3) as a battery, then there will be forced
oscillations of alternating current with the frequency of the source in the
RLC-loop of the circuit. Let's look at calculations of alternating current
circuits with different elements.

5.2.1. Calculation of a circuit with active resistance

Figure 5.15 shows an alternating current circuit consisting of an
active resistance R and a source of harmonic emf EC(t), obeying the law

Figure 5.15.𝑒 (𝑡) = 𝐸𝑐 𝑐𝑜𝑠Ω𝑡,
where  is the frequency of the generated emf;𝐸𝑐  is the amplitude of the emf.

Under the action of this emf of an electric circuit, an alternating
voltage is created

R
ec(t)
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𝑢(𝑡) = 𝑈 cos Ωt (5.134)

As can be seen from relation (5.128), under the action of voltage
u(t) under the condition that XL = XC = 0 and R ≠ 0 , the current𝑖(𝑡) = 𝑈 𝑐𝑜𝑠Ω𝑡𝑅 (5.134)

where R is the active resistance of the circuit, equal to the real part of
the complex resistance (see 5.131).

In other words, in this case

Z = R. (5.135)

Equation (5.134) can be regarded as Ohm's law for a circuit
section. As can be seen from (5.134) the active resistance does not change
the phase of alternating current oscillations in the circuit, and therefore
the phase shift between current and voltage on the resistance is zero.

From Fig. 5.15 and the relations for current and voltage, it follows
that all the power in the circuit in question is allocated on the active
resistance. Herein lie both the advantages and disadvantages of this
circuit. The advantage is that all the power is used by the consumer. The
disadvantage is that on the resistance, in addition to the useful power,
joule heat is also released, which leads to energy losses, possible
overheating and rapid failure of the energy consumer.

The instantaneous power used by the consumer, respectively, is𝑃(𝑡) = 𝑖𝑢 = 𝑈 cos Ω𝑡𝑅 (5.136)

Average power emitted during the period of oscillation Pav(t)𝑃 (𝑡) = 1𝑇 𝑈2𝑅 [1 + cos 2Ω𝑡]𝑑𝑡 = 𝑈2𝑅 (5.137)

It is difficult to measure voltage and current amplitudes with
electrical measuring instruments, because the instruments do not react to
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the instantaneous value, but to the average value of the measured
quantities. However, the average value of the harmonic-varying values of
current and voltage over a period, is zero. Therefore, instead of measuring
the mean value of the value itself, the mean value of its square (RMS
value) is resorted to, namely

(i2)av or (u2)av

The RMS value is independent of the current direction and
therefore not zero. Calculation of the RMS values is carried out in the
same way as the power Pav.𝑃 (𝑡) = 1𝑇 𝑈2𝑅 [1 + cos 2Ω𝑡]𝑑𝑡 = 𝑈2𝑅 (5.137)

(𝑖 ) = 𝐼2 ;  (𝑢 ) = 𝑈2 (5.138)

Quantities equal to (𝑖 )  or  (𝑢 )  are called effective
values of alternating current or voltage, and are denoted by I  or  U,
respectively.

It follows from (5.138) that𝐼 = 𝐼√2 ; 𝑈 = 𝑈√2 (5.139)

Substituting Um from (5.139) into (5.137), we obtain𝑃 = 2𝑈2𝑅 = 𝑈𝑅
as well as 𝑃 = 𝐼𝑈 (5.140)

Comparing (5.140) with direct current power, we conclude that
the effective current or voltage of an alternating current with an active
resistance is respectively equal to the current and voltage of a direct
current causing the same action as an alternating current.
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5.2.2. Calculation of a circuit with capacitance

An alternating current circuit with capacitance is shown in Figure
5.16. The capacitance included in series in an electric circuit breaks it and
therefore there is no direct current in it.

Figure 5.16.
In an alternating current circuit, the capacitance is continuously

recharged due to changes in current direction, so the instantaneous and
effective current values are not zero, although the average current per
period is zero. Let's calculate the instantaneous current. According to
Ohm's law for a circuit section𝚤̂(𝑡) = 𝑢(𝑡)𝑋 = 𝑈−𝑗 1Ω𝐶𝚤̂(𝑡) = 𝑗𝑈 Ω𝐶 = 𝑈 Ω𝐶𝑒𝑖(𝑡) = 𝐼 cos 𝜔𝑡 + 𝜋2 (5.141)

or 𝑖(𝑡) = −𝐼 sin 𝜔𝑡 (5.142)

where 𝐼 = 𝑈 Ω𝐶 = 𝑈𝑋 (5.143)

From equation (5.141) it follows that the current on the capacitor
is ahead of the voltage by an angle π / 2 (a quarter of a period).

ec(t)
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5.2.3. Calculation of a circuit with inductance

An alternating current circuit with inductance is shown in Figure
5.17.

Figure 5.17.
Similar to the previous one𝚤̂(𝑡) = 𝑈𝑋 = 𝑈𝑗Ω𝐿𝚤̂(𝑡) = 𝑈Ω𝐿 𝑒 = 𝐼 𝑒𝑖(𝑡) = 𝐼 cos 𝜔𝑡 − 𝜋2 = 𝐼 𝑠𝑖𝑛𝜔𝑡
In a circuit with inductance, the inductive current lags the

voltage in phase by an angle of π / 2 (quarter period).

5.2.4. Calculation of the complete RLC circuit

In a real RLC circuit, the current𝚤̂(𝑡) = 𝑢(𝑡)𝑍
In this case the impedance 𝑍 leads to a phase shift of the current

with respect to the voltage by an angle f. This angle is determined, as can
be seen from (5.131), by all the resistances included in the impedance 𝑍.
In complex form 𝐼 = 𝑈𝑍
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This equation, like the expression𝚤̂(𝑡) = 𝑈(𝑡)𝑍
is called Ohm's law for an alternating current circuit in complex
form.

The most common methods of calculating alternating current
electrical circuits are the vector diagram method and the complex
method. The essence of the vector diagrams method has been described
above, so let's consider the complex method of calculation.

Kirchhoff's laws, including the method of mesh currents, are used
to calculate alternating current circuits, as in the case of direct currents.
The calculation equations are made in the usual way with the only
difference that a complex representation of values is used. In this case
voltages, emf and currents are written in the equations after reduction by
the multiplier eJ0}t. To avoid unnecessary calculations, only the initial
phases of currents, voltages, and emf are entered into the complex
exponents. The inductive and capacitive resistances are also written in
complex form. The voltage drops are calculated by multiplying the
corresponding currents by the resistances.

Using the conventional algebraic methods of solving systems of
equations, the complex mesh currents and, respectively, the complex
circuit element currents are calculated. The results are multiplied by the
multiplier ejωt, the real and imaginary values are distinguished, and their
amplitudes and phases are calculated.

Examples of calculating alternating current circuits are given in
the section on solving the corresponding problems.

5.3. Application of alternating current

It is known that of all types of energy, alternating current
electricity is the most widespread in technology, industry and transport,
as well as at home. This is due to the convenience of use and ease of
delivery of this energy to the consumer.
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The long-known direct current is not widely used, since no
sufficiently powerful, efficient direct current sources have been built to
date. Electric batteries and direct-current batteries have low capacity and
power, are bulky and need frequent recharging, and deteriorate quickly.
Direct current of relatively high power cannot be transmitted directly over
long distances because of thermal losses in power lines.

The use of alternating current began at the beginning of the last
century, when the corresponding electromechanical induction generator
was invented. In principle, it is a frame rotating in a magnetic field. The
electromagnetic induction emf arising in the frame creates
electromagnetic oscillations in electrical circuits, i.e. alternating
conduction current. The current changes in a sinusoidal, i.e. harmonic law
with a frequency that is determined by the rotation speed of the frame.
The value of the generated electricity and the generator power is
determined by the magnetic field. The magnetic field is created by both
permanent magnets (in low power generators) and electromagnets. The
magnitude of the induction in the windings supplying the electric circuits
of the consumers is determined by the number of turns of these windings.

The electromagnetic generator, included in the circuit, creates in
it a powerful undamped forced oscillations. However, it is not possible to
obtain current of high enough frequency, because it would require very
high rotor speed of the generator. And in practice, high frequencies are
not used in electrical engineering. The frequency of alternating current
used in machinery and households is called the industrial frequency.
This frequency within each country is standard, making it possible to
create a unified energy grid. For example, in Russia and Israel the
industrial frequency is 50 Hz, in some Western countries it ranges from
45 to 60 Hz.

Several types of induction generators are currently used to
generate alternating current electricity. They all consist of an
electromagnet or permanent magnet, a magnetic field source, and a
winding in which alternating emf is induced. Structurally, an alternator
consists of a stator and a rotor. In low-power alternators, the winding in
which the emf is induced is placed in the rotor slots and the electromagnet
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winding is placed in the stator slotsIn high power alternators, on the
contrary, the solenoid winding is placed in the rotor, because it is more
convenient to draw the generated current from the fixed winding. To
create a magnetic field in the windings of the electromagnet, a relatively
small current produced by an autonomous DC generator, the rotor of
which is mounted on the shaft of the main generator, is fed with the help
of so-called graphite brushes.

Industrial generators are installed at power plants. Power plants
can be thermal, hydraulic or nuclear. In thermal power plants, the rotor
of the generator is rotated by a steam turbine (turbine generator) or a heat
engine. In a hydroelectric power plant, the generator rotor is rotated by a
hydro turbine (hydroelectric generator). In nuclear power plants, a steam
turbine powered by the heat of the nuclear reactor is used to drive the
generator rotor.

Recently, a lot of attention has been paid to solar and wind power
plants. In the future, it is expected to build fusion power plants that will
use cheap and highly environmentally friendly fusion energy.

5.4. Power transmission over a distance

At the beginning of the 20th century, when the widespread use of
electricity began, many small power plants were built for a particular
consumer or small group of consumers. Transmission of electricity from
the power plant was done over short distances and did not cause any
major problems. Over time, however, it has become clear that it is much
more profitable to build powerful power plants connected to the unified
power grid of large industrial districts or even the entire country. The
main problems in this regard were the losses of electricity during
transmission over long distances.

These are thermal losses on the resistance of wires, losses
associated with magnetic hysteresis, spin effect, gas discharges around
overhead transmission lines, the influence of the reactive component of
the resistance of transmission lines, reducing cosφ, useful power and a
number of others. Thermal losses increase when transmitting large
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volumes of low voltage currents (proportional to the square of the current
strength), so it is much more advantageous to use high-voltage
transmission lines with relatively low current values.

Transformers are used to convert current of a given wattage by
increasing the voltage with a corresponding decrease in the amperage.
The transformer was invented at the beginning of the 20th century. In
principle, the transformer consists of a ferromagnetic core on which there
are two windings with a small and a large number of turns. Due to the
phenomenon of electromagnetic induction, the low voltage that is applied
to the small winding is converted to a high voltage that is removed from
the large winding, according to the ratio𝑈𝑈 = 𝑁𝑁 = 𝐾
where K is the transformation ratio;
N1, N2 - number of winding turns;
U1, U2 - voltages on the windings.

If a step-up transformer is used at the beginning of the line, a step-
down transformer is used at the end of the line to supply consumers with
low and therefore relatively safe voltage, e.g. 220 V.

The invention of three-phase systems further improved the
profitability and efficiency of electricity transmission and use. A
generator with an electromagnet consisting of three windings arranged at
an angle of 120° with a corresponding phase shift of their emf is used
there. Thus a rotating magnetic field is generated in the stator where the
windings are located.

It is also possible to reduce losses by transmitting direct current
instead of alternating current. However, since direct current cannot be
transformed as alternating current, in this case you must use a system with
special converters.

The power plant generates three-phase low-voltage current and
transforms it into high-voltage current. The current is then converted by
powerful mercury-arc rectifiers on ignitrons into high voltage direct
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current and fed into the high voltage transmission line. On the receiving
side, the process is reversed - the conversion of DC into AC with a voltage
that is safe for the consumer.

Another highly efficient way to reduce losses while reducing the
number of high-voltage overhead line networks is to replace them with
cable lines that are laid in the ground. The widespread use of gas-filled
cables, gas-insulated cables, superconducting and cryoconducting power
cables significantly reduces power losses during transmission over long
distances and increases the efficiency of the power transmission system.

5.5. Typical problems on oscillations

5.5.1. Problems on mechanical oscillations

Problem 1. A mathematical pendulum of length l = 1m. oscillates
with amplitude A = 1 cm. In what time t1 will the pendulum travel a path
equal  to  its  amplitude,  if  at  the  initial  moment  it  was  in  a  state  of
equilibrium? In what time t2 and t3 will the pendulum pass the first and
second half of this path?

Solution. Since the amplitude of oscillations A<< l, the
oscillations are harmonic and obey the equation𝑥 = 𝐴 sin 𝜔 𝑡
where A is the amplitude;
ω0 is the natural cyclic frequency of oscillations.𝜔 = 𝑔𝑙

If x = A , thensin 𝜔 𝑡 = 1; 𝜔 𝑡 = 𝜋2 ; 2𝜋2 𝑡 = 𝜋2 ; 𝑡 = 𝑇4
On the other side,
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𝑇 = 2𝜋 1𝑔 = 2𝜋 19,81 ≈ 2 𝑠𝑒𝑐
Therefore 𝑡 = 0,5 𝑠𝑒𝑐
If 𝑥 = , то𝐴2 = 𝐴 sin 𝜔 𝑡 , sin 𝜔 𝑡 = 12 , 𝜔 𝑡 = 𝜋6
Therefore 𝑡 = 𝜋𝑇6 ∙ 2𝜋 ≈ 0.17 𝑠𝑒𝑐
The second half of the path the pendulum will pass in time𝑡 = 𝑇4 − 0,17 = 0,33 𝑠𝑒𝑐
Problem 2. The sledge of length l slides through the snow without

friction, but stops on the asphalt, whose coefficient of friction is 𝜇. The
weight of the sled is evenly distributed along its length. What is the
braking time of the sled?

Solution. The equation of motion in this case is𝑙𝑚 �̈� = −𝐹
where m0 is the mass of a unit of sled length;
Ffr is the friction force of the sled on the asphalt.

The friction force by definition is equal to the product of the
normal pressure force by the friction coefficient. Let us denote by x the
part of the length of the sledge hit the asphalt equal to the value of the
braking distance. The force of normal pressure is equal to the force of
gravity Fg of the part of the sledge driven on the asphalt. Since𝐹 = 𝑚 𝑔𝑥,
then 𝑙𝑚 �̈� = −𝜇𝑚 𝑥𝑔
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or �̈� = 𝜇𝑔𝑙 𝑥 = 0
The resulting equality is the equation of harmonic oscillations,

for which the natural frequency𝜔 = 𝜇𝑔𝑙
and period 𝑇 = 2𝜋 𝑙𝜇𝑔

Before stopping the sledge passes a quarter of the period of
oscillation, therefore 𝑡 = 𝑇4 = 𝜋2 𝑙𝜇𝑔

Problem 3. A variable force with a frequency of 16 Hz is applied
to the end of the spring of a spring pendulum with a mass m = 1kg. Will
there be resonance if the spring stiffness k = 400 N/m.

Solution. Resonance occurs when the frequency  of the forcing
force coincides with the natural frequency ω0. The value of ω0 for  the
spring is

𝜔 = 𝑘𝑚 = 4001 = 20 𝐻𝑧
Thus,  < ω0 and therefore no resonance occurs in this system.
Problem 4. Frequency of the natural vertical oscillations of the

railroad car ω0. On the joints of the rails, the car receives periodic
repetitive shocks. At what speed of the train resonance can occur if the
length of each rail between joints l.
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Solution. According to the condition, the necessary speed of the
train 𝜐 = 𝑙𝑇
where T is the period of natural oscillations of the car;
ω0 is the frequency of natural oscillations.

Since 𝑇 = 2𝜋𝜔
then substitution gives 𝜈 = 𝑙𝜔2𝜋

5.5.2. Problems on oscillations in an oscillating circuit

Problem 5. What are the cyclic natural frequency of oscillations,
frequency of damped oscillations, damping coefficient, logarithmic
decrement of damping, initial phase of oscillations of the series circuit
RLC with R = 50 Ohm, L = 100 μH, C = 5 nF. Determine the mode of
oscillations in the circuit

Solution. The natural frequency of the oscillating circuit

𝜔 = 1𝐿𝐶
Substitution gives 𝜔  = 1.43 MHz.
Frequency of oscillations in the circuit, taking into account

dissipations (damped oscillations)

𝜔 = 1𝐿𝐶 − 𝑅4𝐿 = 1,32 𝑀𝐻𝑧
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Attenuation coefficient 𝛿 and logarithmic decrement of damping𝜒 𝛿 = 𝑅2𝐿 = 0,5 ∙ 10  𝑠𝑒𝑐 ;  𝜒 = 𝛿𝑇 = 0,5 ∙ 10 2𝜋1.32 ∙ 10 = 2,42
The oscillation mode is determined by the ratio between the active

and reactive resistance of the circuit. If 𝑅 < 𝑋 𝑋 , then the mode in

the circuit is oscillatory. If 𝑅 > 𝑋 𝑋 , the mode is aperiodic.

𝑋 𝑋 = 105 ∙ 10 = 0,2 ∙ 10 = 140 Ω
Since 𝑅 < 𝑋 𝑋  the mode in the circuit is oscillatory.

The initial phase of the oscillations

𝜔 = tan 4𝐿𝑅 = −1 = tan 4𝐿 ∙ 1010 ∙ 10 − 1 = tan 6,38 ≅ 81°≅ 0,9 𝜋2
5.5.3. Problems on alternating current

Problem 6. An alternating current is flowing in the RLC circuit𝑖 = 𝐼 𝑐𝑜𝑠𝜔𝑡
Calculate the amplitude values of the voltage drop across each of

the circuit elements and the instantaneous value of the voltage across the
circuit terminals, and determine the law of variation of this voltage.

Solution. According to Ohm's law for a circuit section, the
voltage drop in that section is equal to the product of the current by its
resistance, so 𝑈 = 𝐼 𝑅; 𝑈 = 𝐼 𝜔𝐿;  𝑈 = 𝐼 ,
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where the "m" sign denotes the amplitude value of the parameter
Um=ImZ,
Z is the circuit resistance

𝑍 = 𝑅 + 𝜔𝐿 − 1𝜔𝐶 ;
Um is the voltage drop across the terminals of the complete RLC

circuit.
Since the instantaneous current value𝑖 = 𝐼 cos 𝜔𝑡,

then in the complex form 𝚤̂ = 𝐼
The complex resistance of the circuit and the voltage drop are

determined from the formulas𝑍 = 𝑅 + 𝑗 𝜔𝐿 − 1𝜔𝐶 = 𝑍 𝑒
where ω and Zm are determined from the equations

𝑡𝑔𝜑 = 𝜔𝐿 − 1𝜔𝐶𝑅 ;
𝑍 = 𝑅 + 𝜔𝐿 − 1𝜔𝐶 ;

a 𝑢 = 𝚤̂𝑍 = 𝐼 𝑍 𝑒 = 𝑈 𝑒𝑈 = 𝑅𝑒𝑢 = 𝑈 cos (𝜔𝑡 + 𝜑)
where

𝜑 = tan 𝜔𝐿 − 1𝜔𝐶𝑅 ;
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Um=ImZm

Problem 7. The electric circuit of the oscillating circuit includes
in series: a resistor of 1 kOhm, a capacitor of 1 μF and a coil with an
inductance of 0.5 H. Find the resonant frequency vp, reactances XL and
XC, impedance Z at the frequency of the emf source ω = 62.8 kHz.

Solution. 𝑋 = 1𝜔𝐶 = 162,8 ∙ 10 ∙ 10 = 16 Ω𝑋 = 𝜔𝐿 = 62,8 ∙ 10 ∙ 0,5 = 31,4 ΩZ = 10 + (31,4 ∙ 10 − 16) ≅ 31,4 Ω𝜈 = 𝜔2𝜋 = 12𝜋√𝐿𝐶 = 16,28 10 ∙ 0,5 = 225 𝐻𝑧
Problem 8. Calculate the AC circuit of industrial frequency v =

50 Hz, shown in the figure, if e = 2sinωt;
R1 = R2 = 5 Ohm; L1 = 5 mH; C1 = 1 mF ; L2 = 10 mH; C2 =

0,5 mF;

Solution. Let us apply the method of mesh currents. The
equations for mesh currents in complex form are𝐼 𝑅 + 𝑗𝜔𝐿 − 𝑗 1𝜔𝐿 − 𝐼 ∙ 0 + 𝐼 𝑗 1𝜔𝐶 = �̂�−𝐼 ∙ 0 +  𝐼 (𝑅 + 𝑗𝜔𝐿 ) − 𝐼 𝑗 𝜔𝐿 = 0
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+𝐼 𝑗 1𝜔𝐶 − 𝐼 𝑗 𝜔𝐿 + 𝐼 𝑗 𝜔𝐿 − 𝑗 1𝜔𝐶 − 𝑗 1𝜔𝐶 = 0
After substituting the numerical values, we obtain(5 − 1.6𝑗)𝐼 − 0 ∙ 𝐼 + 3,18𝑗𝐼 = 20 ∙ 𝐼 + (5 + 3,14𝑗)𝐼 − 3,14𝑗𝐼 = 0.3.18𝑗 ∙ 𝐼 − 3.14𝑗𝐼 − 6,4𝑗𝐼 = 0
We solve the system by the determinant method𝐼 = ΔΔ ; 𝐼 = ΔΔ ; 𝐼 = ΔΔ
System determinant

Δ = (5 − 1,6𝑗) 0 3,18𝑗0 (5 + 3,14𝑗) −3,14𝑗3,18𝑗 −3,14𝑗 −6,4𝑗 ≅ (1,5 − 1,75𝑗)10
𝛥 = 2 0 3,18𝑗0 (5 + 3,14𝑗) −3,14𝑗0 −3,14𝑗 −6,4𝑗 = 60 − 64𝑗

𝛥 = (5 − 1,6𝑗) 2 3,18𝑗0 0 −3,14𝑗3,18𝑗 0 −6,4𝑗 = 20
𝛥 = (5 − 1,6𝑗) 0 20 (5 + 3,14𝑗) 03,18𝑗 −3,14𝑗 0 = 20 − 32𝑗

𝐼 = 60 − 64𝑗150 − 175𝑗 = (60 − 64𝑗)(150 + 175𝑗)150 + 175 = 2 + 0,09𝑗5,3≅ 0,38 ,
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𝐼 = 0,3 + 0,35𝑗5,3 ≅ 0,09𝑒 ,
𝐼 = 0,86 + 0,13𝑗5,3 ≅ 0,16𝑒 ,𝑖 = 𝑖 = 𝑖 = 0,38 cos(𝜔𝑡 + 0,015𝜋)
𝑖 = 𝑖 = 0,09 cos(𝜔𝑡 + 0,027𝜋)
𝑖 = 𝑖 = 0,16 cos(𝜔𝑡 + 0,05𝜋)

𝐼 = 𝐼 − 𝐼 = 0,38 + 0,017𝑗 − 0,16 + 0,025𝑗 = 0,22 + 0,042𝑗
𝐼 = 0,22 cos (𝜔𝑡 + 0,06𝜋)

𝐼 = 𝐼 − 𝐼 = 0,056 + 0,06𝑗 − 0,16 + 0,025𝑗 = −0,1 + 0,03𝑗
𝐼 ≅ −0,1 cos(𝜔𝑡 − 0,05𝜋)

Problem 9. Determine the dependence of the specific electrical
conductivity of intrinsic semiconductors on temperature.

Solution. Specific conductivity γ can be determined from Ohm's
law, according to which the dependence of the current density vector 𝐽 on
the electric field strength 𝐸 is given by the equation𝐽 = 𝛾𝐸.

On the other hand, since the current in the intrinsic semiconductor
is the sum of electron and hole currents with densities 𝐽  and 𝐽 , which
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are created by the motion of carriers with average velocities 𝜐nav and 𝜐pav,
and effective masses mn* mp* then𝐽 = 𝑛 (−𝑒)𝜐 + 𝑛 (+𝑒)𝜐
and 𝐽 = 𝑒 𝑛 𝜏𝑚∗ + 𝑛 𝜏𝑚∗ 𝐸

Since holes and electrons in the intrinsic semiconductor generate
and recombine simultaneously with equal probability, their
concentrations are equal and proportional to this probability. Thus,
comparing this expression with Ohm's law and considering that nn = np=
n and denoting 𝑒 ∗ + ∗ = 𝛾 ,

we obtain that 𝛾 = 𝛾 𝑛
Generation is the result of an electron moving from the valence

band to the conduction band by jumping over the band gap. According to
Boltzmann's law, the probability of generation ρ is proportional to
temperature T and inversely proportional to the band gap width ΔΕ𝑝 ≈ 𝑒

Finally 𝛾 ≈ 𝛾 𝑒



66

Chapter 6. Wave processes

The perturbation of physical quantities that propagate in space,
which characterize the states of physical objects, transferring the energy
and nature of the perturbation from one point of space to another, is called
a wave. It is believed that waves propagate in a continuous medium
although the idea of a continuous medium is an idealization of reality,
since purely continuous media do not exist in Nature. Waves can carry
both oscillatory and non-oscillatory motion. According to this
definition, waves that carry oscillatory motion can ideally be considered
as collective oscillations of a continuous medium filled with an infinite
number of interconnected point oscillators. Due to the fact that the
description of a continuous medium requires specifying its defining
parameters in an infinite number of points in space, such a medium is
characterized by an infinite number of degrees of freedom.

When considering a propagating wave, it is always possible to
distinguish a set of points in the medium whose changes are in the same
phase at a given moment. The totality of these points forms an constant
phase surface in space, which is also called a wave surface. When this
surface is in contact with an unexcited medium, it is called a wave front.
The wave surface and the wave front at points of homogeneous and
isotropic space have a spherical shape. Such waves are called spherical
waves. Sources of spherical waves are called point sources. Waves
whose constant phase surface is a plane are called plane waves. A line
perpendicular to the wave surface (wave front) is called a ray. Rays of
spherical waves are radial lines of the wave surface.

The rays of plane waves are beams of parallel lines perpendicular
to the plane of the wave front. Obviously, the beams of wave rays coming
from a distant source can always be assumed to be parallel and the waves
to be flat. According to the definition, the rays on average coincide with
the direction of wave propagation. If a wave propagates along the
direction of oscillation, it is called a longitudinal wave.  A  wave  that
propagates perpendicular to the direction of oscillation is called a
transverse wave. It is obvious that longitudinal waves by this definition
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are, in particular, waves excited by compressive and tensile strains in a
real medium. Waves excited by the shear deformation of the material
medium are, on the contrary, transverse.

Examples of longitudinal waves in a material medium are sound
waves, and in an immaterial medium, presumably, gravitational waves.
Examples of transverse waves are waves propagating in a sounding string
or in a stretched cord, as well as electromagnetic waves, etc.

The propagation of the wave is not related to the movement of
particles directed along it. The wave process only transfers energy. The
result is an energy flow that diverges in all directions from the source.
This  flow  is  called  a Poynting vector. The direction of the Poynting
vector coincides with the direction of wave propagation. The energy per
unit of wave surface passing through an observation point per unit time
is called the intensity of the wave. The intensity is calculated by the
formula 𝐽 = 𝑁𝑆 (6.1)

where
N is the power carried by the wave;
S is the area of the spherical wave surface.

Since S = 4πR2, the intensity of the wave is always inversely
proportional to the square of the distance from the source to the
observation point.

The representation of continuous media is justified only in the
classical approximation, which is limited to the consideration of
relatively slow macro-processes, in the description of which the discrete
structure of physical bodies and fields can be neglected. From the
classical point of view, all processes occurring in nature and connected
with energy exchange are reduced to the motion or deformation of
discrete (corpuscular) material bodies, obeying the laws of mechanics, or
- to the fundamentally different from them spread of wave processes in
continuous media.
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Meanwhile, by the end of the 19th and beginning of the 20th
century, facts began to accumulate that increasingly demonstrated that
there are neither completely discrete nor completely continuous
structures in the real world.

In particular, it turned out that there is no fundamental difference
between the real behavior of particles, which in classical physics were
attributed purely corpuscular properties resulting from their discreteness,
and the real propagation of processes in continuous media, which were
attributed purely wave properties resulting from the continuity of the
medium.

In particular, it turned out that real objects are neither pure
corpuscles (particles) nor pure waves. They actually have both
corpuscular and wave properties. This concept was called wave-particle
duality and formed the basis of a new, quantum physical theory.

According to quantum theory, objects can generally exhibit both
corpuscular and wave properties to a greater or lesser extent, depending
on the conditions of the processes in which they are involved. Therefore,
before proceeding to the study of real processes, it is necessary, following
the already considered behavior of discrete bodies, to consider in detail
purely wave processes. Let us limit ourselves to the consideration of
waves that carry oscillatory processes.

6.1. Classification of waves

The material medium is known to consist of particles bound
together by electromagnetic interactions. When such a medium is
mechanically perturbed, i.e. when any of its points is removed from the
equilibrium state, various types of deformation arise in it, which are
transmitted from one particle to another particle associated with it in the
form of waves. Such waves are called elastic waves. Depending on the
type of strain transmitted by the elastic wave, it may be longitudinal or
transverse. Elastic waves, as mentioned above, transmitting compressive
or tensile strain of the medium are longitudinal, and waves transmitting
shear strain are transverse. Since expansion and contraction deformations
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are always elastic (see Section 2.9), the propagation of elastic
longitudinal waves can occur in any material medium, regardless of its
aggregate state. On the contrary, shear strains in liquids, gases and plasma
are known to be inelastic. For this reason, elastic transverse waves can
propagate only in solids (see point 2.9). Elastic waves, by their definition,
are mechanical waves because they are always transferred from one
particle to other particles associated with it. This means that elastic waves
can only propagate in a real medium.

In real medium, in addition to elastic waves, so-called capillary
(surface) waves can also propagate. The latter occur, in particular, on the
surface of the liquid. The source of such waves are external disturbances
that remove the medium from the state of equilibrium. The forces that
restore equilibrium to the medium are surface tension or gravity.

Wave processes are not necessarily associated with mechanical
motions that perturb the medium. In some cases, there may be
perturbations that result from changes in non-mechanical properties of
objects, such as electrical, magnetic, optical, etc.

The waves arising in this case are of a purely non-mechanical
nature. Examples of non-mechanical waves are electromagnetic waves,
as well as hypothetical gravitational waves not yet detected by direct
observation. Non-mechanical waves, according to their definition, can
propagate in both real and immaterial medium, such as vacuum.

In quantum theory, which, as already mentioned, is based on the
idea of wave-particle duality, elementary particles are compared with
waves with special properties. These waves are called matter waves.
Sometimes matter waves are referred to as de Broglie waves after Louis
de Broglie, who first introduced them into consideration. On the contrary,
light waves, as well as other types of radiation have corpuscular
properties and are considered, under certain conditions, as particles called
photons.

Electromagnetic waves were predicted by Faraday. Maxwell, in
turn, justified theoretically the possibility of their existence (see section
4.2.3) in his famous electromagnetic field theory. In particular, he showed
that the electromagnetic field is the source of fluctuations in the properties
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of the medium, which are not necessarily related to the movement of its
particles. Therefore, for the propagation of electromagnetic waves, the
presence of a material medium is not required. Electromagnetic waves
were experimentally discovered and studied by Hertz.

Maxwell also drew attention to the fact that the so-called
electrodynamic constant c included in the equations of the
electromagnetic field determines, on the one hand, is the speed of
propagation of electromagnetic waves and, on the other hand, coincides
with the speed of light in a vacuum, measured experimentally, with a very
high accuracy. On this basis, Maxwell proposed the idea that light has the
character of electromagnetic waves. Let us point out, in this connection,
that the wave theory of light was put forward in the 17th century by
Descartes. This theory was further developed by Huygens and Fresnel.
Huygens believed that light waves, by analogy with sound, are
longitudinal.

He, however, like many other scientists of his time, mistakenly
believed that any waves could propagate only in an elastic, material
medium. Since light, unlike sound, also propagated in the vacuum, he,
like Descartes in his time, believed that the vacuum is filled with some
elastic continuous (continuous) material medium, which was called the
world (light-carrying) ether.

Conceptions of the world's ether initially encountered serious
difficulties. First of all, it was necessary to explain why all bodies,
including celestial bodies, move freely relative to the ether without
encountering resistance from it. Up until Maxwell's theory, this
phenomenon was explained by the fact that light, like sound, has the
character of longitudinal waves, and the ether is, although elastic, but so
rarefied medium that the resistance it offers to the movement of bodies is
negligible and virtually imperceptible. However, Fresnel's experiments,
later confirmed by Maxwell's theory, established the transverse nature of
light waves.

In this regard, it was necessary to reconsider the above concepts
of the ether, because otherwise it would be necessary to make the absurd
assumption that the ether is an absolutely solid medium. In addition, the
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notion of the ether as a rarefied medium was in no way consistent with
the enormous speed of propagation of electromagnetic waves, including
light. The result was a new, albeit poorly understood model, according to
which the ether was represented as a continuous but inelastic medium. In
this case, light was seen as surface waves, similar to the waves on the
surface of a liquid. The surface tension of the liquid was likened to the
tension of the electric and magnetic field lines of a light wave.

Another difficulty associated with the ether arose as the idea of
the existence of absolute rest and motion re-entered physics along with
it. The fact is that, according to the laws of electrodynamics established
by Maxwell's theory, the speed of propagation of light in a vacuum is the
same everywhere.

This meant that the ether that fills the vacuum is an absolutely
stationary system of reference, and the speed of light in the vacuum is the
absolute speed. It followed that the principle of relativity, established in
mechanics by Galileo, is not fulfilled in electrodynamics.

In other words, the speed of light emitted by a source moving
relative to the stationary ether must have changed with the change in
speed and direction of the light source.

At the end of the 19th century, physicists  Albert A. Michelson
and Edward W. Morley set up an experiment by which the speed of light
was measured in the direction of the Earth's motion and in the
perpendicular direction. However, very careful and very accurate
measurements of the speed of light, repeated later by other researchers,
found no difference between these speeds.

Thus, the Michelson-Morley experiments disproved the
possibility of the existence of an absolutely stationary world ether. The
alternative assumption that the ether, as an all-permeating medium, and
therefore light, are completely entrained by moving bodies, also had to
be discarded, as it contradicted the experiment.

The way out of this seemingly hopeless situation was suggested
by Einstein. The special theory of relativity developed by him in 1905
allowed, first, to abandon the absolute space and time introduced by
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Newton, and, second, it led to the rejection of the existence of an
absolutely stationary reference system associated with the ether. This, in
turn, allowed Einstein to abolish the ether itself, now completely
superfluous, both from the standpoint of electromagnetic theory and, in
particular, from the standpoint of relativity (see also Chapter 3), and to
do away with the problems associated with it.

6.2. Wave function

Oscillations, as was shown above, are described by an oscillatory
periodic function of time, so the wave process that carries oscillations can
be described by the same function, but depending on both time and space
coordinates.

Let us first consider the wave function in the classical
approximation. For this purpose, let us assume that in some point of
space-time filled with a continuous medium, the oscillations of a point
oscillator are excited. These oscillations propagate in the form of a wave,
passing from one point of the medium to another. This means that the
oscillations of each successive point of the medium with respect to the
previous one occur with some time lag by the value of t1, or, what is the
same, with some phase shift. From the theory of oscillations considered
in the previous chapter, taking into account the specified lag, the state of
each point in space can be described by means of the function𝜓(𝑟, 𝑡) = 𝑓[𝜔(𝑡 − 𝑡 )] (6.2)

where ω is the angular frequency of oscillations of the source oscillator.
Since the function 𝜓(𝑟, 𝑡) reflects the character of oscillations in

an arbitrary point of space, we can assume that it describes a wave process
propagating in the medium. That is why it is called a wave function. If
we assume that the medium is homogeneous and isotropic, then it is
logical to assume that the wave propagates in space-time at a constant
speed 𝜐. For simplicity, let us assume that the wave propagates in one-
dimensional space in the direction of the Ox axis, and the source oscillator
is located at the origin, then
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𝑡 = 𝑥𝜐 (6.3)

Substituting (6.3) into (6.2), we obtain that𝜓(𝑥, 𝑡) = 𝑓 𝜔 𝑡 − 𝑥𝜐 (6.4)

or 𝜓(𝑥, 𝑡) = 𝑓 𝜔𝑡 − 𝜔𝜐 𝑥 (6.5)

The value  can be calculated in the following way𝜔𝜐 = 2𝜋𝜈𝜐 = 2𝜋𝜐𝑇 (6.6)

where
v is the linear frequency of oscillation of the oscillator;

T is the period of oscillation.
As the wave propagates in space-time, many points (oscillators)

appear in which the lag time is a multiple of the oscillation period, i.e.
t1=mT,

where m = 1, 2, 3, ...
For these points

x1m = mυT (6.7)

If we assume m = 1, then

x11 = υT (6.8)

Thus, x11 is the distance between the two closest points, the time
lag of oscillations in which is equal to the period T. This distance is called
the wavelength and is denoted by λ.

It follows from (6.8) and (6.6) that
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λ=υT (6.9)

and 𝜔𝜐 = 2𝜋𝜆 = 𝑘 (6.10)

The value of k is called the wave number, and a vector equal in
absolute value to the wave number and directed in the direction of wave
propagation is called the wave vector �⃗�.

Since, according to (6.10)𝜔𝑘 = 𝜐
then 𝜓(𝑥, 𝑡) = 𝑓(𝜔𝑡 − 𝑘𝑥) (6.11)𝜓(𝑥, 𝑡) = 𝑓[𝑘(𝜐𝑡 − 𝑥)] (6.12)

It follows from relation (6.11) that the frequency ω and the wave
number k characterize the periodicity of the wave process in time and
space, respectively.

The wave arising from the oscillations of a point oscillator
propagates, generally speaking, in three-dimensional space. Therefore, in
the general case 𝜓(𝑟, 𝑡) = 𝑓[𝜔𝑡 − 𝑘𝑟] (6.13)

or 𝜓(𝑟, 𝑡) = 𝑓[𝑘(𝜐𝑡 − 𝑟)] (6.14)

6.3. Wave equation

The wave function introduced by relations (6.13) and (6.14), as
follows from the theory of differential equations of mathematical physics,
satisfies the equation
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𝛿 𝜓𝛿𝑥 + 𝛿 𝜓𝛿𝑦 + 𝛿 𝜓𝛿𝑧 − 1𝜐 𝛿 𝜓𝑑𝑡 = 0 (6.15)

In the particular case of wave propagation in one-dimensional
space, equation (6.15) takes the form𝛿 𝜓𝛿𝑥 − 1𝜐 𝛿 𝜓𝑑𝑡 = 0 (6.16)

Equation (6.15) or partial equation (6.16) is called the wave
equation.

The quantityΔ𝜓 = 𝛿𝛿𝑥 + 𝛿𝛿𝑦 + 𝛿𝛿𝑧 𝜓 = 𝛿 𝜓𝛿𝑥 + 𝛿 𝜓𝛿𝑦 + 𝛿 𝜓𝛿𝑧
is called the Laplace operator or Laplacian, and the valueΔ = 𝛿𝛿𝑥 + 𝛿𝛿𝑦 + 𝛿𝛿𝑧
is the Laplace differential operator (see Appendix 3). With this in mind,
equation (6.15) is usually written in the formΔ𝜓 − 1𝜐 𝛿 𝜓𝛿𝑡 = 0 (6.17)

The wave equation (6.16), in addition to the solution (6.12), also
allows a solution𝜓(𝑥, 𝑡) = 𝑓[𝑘(𝜐𝑡 + 𝑥)] (6.18)

The physical meaning of this solution follows from the fact that
for it 𝜐 = − 𝑑𝑥𝑑𝑡 (6.19)

This means that (6.18) can be seen as a function of the wave
propagating in the direction opposite to the wave propagation expressed
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by the relation (6.14). In this sense, a wave according to (6.12) is
considered a direct wave and is called an incident wave, and a wave
according to (6.18) is called a reflected wave.

The specific form of the wave function 𝜓, given by the function
f, determines the form (profile) of the wave and depends on the law of
oscillations of its source at the starting point x = x0 = 0.

Among the various laws of oscillation, the most common are
harmonic oscillations, which occur with small amplitude, and the
function f is given by cosine or sine to the first power. Let us assume that𝑓(𝜔𝑡 − 𝑘𝑥) = 𝐴 cos 𝜔𝑡 (6.20)

where
A is the amplitude of oscillations,
ω is the cyclic frequency of oscillations.

The following wave functions satisfy condition (6.20)𝜓(𝑥, 𝑡) = acos (𝜔𝑡 ± 𝑘𝑥)𝜓(𝑥, 𝑡) = bsin (𝜔𝑡 ± 𝑘𝑥) (6.21)

Equation (6.21) can also be written as𝜓(𝑥, 𝑡) = 𝑎 cos 2𝜋 𝑡𝑇 − 𝑥𝜆𝜓(𝑟, 𝑡) = 𝑏 cos 2𝜋 𝑡𝑇 − 𝑟𝜆 (6.22)

or as any linear combination of these functions.
The waves described by equations (6.21) and (6.22) are called

harmonic waves. They express an infinite periodic process in time and
space (see Appendix 3). Harmonic waves are also called sine waves or
linear waves.

The wave function 𝜓(𝑥, 𝑡)) or 𝜓(𝑟, 𝑡) (see Appendix 3) can also
be given a complex form as follows
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𝜓(𝑥, 𝑡) = 𝐴[cos(𝜔𝑡 − 𝑘𝑥) + 𝑗 sin(𝜔𝑡 − 𝑘𝑥)]𝜓(𝑟, 𝑡) = 𝐴[cos(𝜔𝑡 − 𝑘𝑥) + 𝑗 sin(𝜔𝑡 − 𝑘𝑟)] (6.23)

Or, using the Euler formula (see Appendix 3), we can obtain the
wave function from (6.23) in the complex form as𝜓(𝑥, 𝑡) = 𝐴𝑒 ( )𝜓(𝑟, 𝑡) = 𝐵𝑒 ( ) (6.24)

6.4. Phase and group velocities. Wave packets

Let us call a single harmonic wave of a certain length λ
monochromatic. Real waves are not monochromatic, but consist of a set
(spectrum) of waves whose lengths lie between λ2 and λ1. The value Δλ=
λ1 - λ2, or Δk= k1 - k2, is called the width of the spectrum. Real waves are
described by decomposing them into a Fourier series.

For a wave process using the Euler formula, this decomposition
takes the form

𝜓(𝑥, 𝑡)| = 𝑎 𝑒 ( ) (6.25)

Let us denote 𝑎 𝑒 | = 𝐴
then

𝜓(𝑥, 𝑡)| = 𝐴 𝑒 (6.26)

where according to Fourier series theory

𝐴 = 1𝜆 𝜓(𝑥, 𝑡)| ∙ 𝑒 𝑑𝑥 (6.27)
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The decomposition (6.26) is called a spectral decomposition. The
same decomposition can be performed over time when x = const.

Spectral decompositions of the wave function of an arbitrary wave
process can be viewed as the result of addition (superposition) of
harmonic waves with multiples of wave numbers or multiples of
frequencies and different amplitudes. It follows from the above that any
real wave process is nothing but a superposition of an infinite number of
harmonic waves of multiple frequency or multiple wave number in the
general case. If there is only one monochromatic wave as part of the
spectrum then the width of the spectrum Δ𝑘 → 0(Δ𝜔 → 0) and the
intervals of time and space in which the wave is defined tend to infinity,
i.e. Δ𝑥 → ∞, Δt → ∞ (Fig.6.1a).

On the contrary, if the width of the spectrum tends to infinity, i.e.
it includes an infinite number of monochromatic waves Δ𝑘 →∞, или  Δ𝜔 → ∞ then as follows from Fourier series theory the process
is strictly localized in space or time. i.e. Δ𝑥 → 0, или  Δ𝑡 → 0 (Figure
6.1b).

For wave packetsΔ𝑘 ∙ Δ𝑥 = 𝑎Δ𝜔 ∙ Δ𝑡 = 𝑏 (6.28)

where a and b are constants. Since a ≥ 1 and b ≥ 1, (6.28) has the formΔ𝑘 ∙ Δ𝑥 ≥ 1Δ𝜔 ∙ Δ𝑡 ≥ 1 (6.29)

Of particular interest are the packets formed by a finite group of
monochromatic waves close in wave numbers and frequencies, namely𝑘 − Δ𝑘 ≤ 𝑘 ≤ 𝑘 + Δ𝑘𝜔 − Δ𝜔 ≤ 𝜔 ≤ 𝜔 + Δ𝜔 (6.30)

where Δ𝑘 ≤ 𝑘Δ𝜔 ≤ 𝜔 (6.31)
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Such packets are usually called a wave train. They can be defined
as a propagating nonlinear wave occupying a limited region of space-time
at any given time.

Figure 6.1a

Figure 6.1b.
The wave train usually contains a limited number of wave crests

(maxima) fairly well localized in space-time. In the limit, when the
number of harmonics forming the wave train tends to infinity and the
spectral composition of the wave train becomes continuous, there remains
only one maximum, which is localized in one point of space and time.
Mathematically, such a spectrum of harmonic waves describes a perfect
solitary wave. For a long time, the solitary wave was considered an
idealization of real reality. However, in 1834 John Scott Russell first
observed such a wave on the surface of the water. It turned out that
solitary waves can arise and exist really in the form of waves of different
nature, but only under certain conditions and when they propagate in an
inhomogeneous medium, which has, as will be shown below, quite
certain properties. Real solitary waves, unlike ideal waves, are localized,

𝜓
Δ𝑥

Δ𝑥
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not in one point, but in some area of space. These solitary waves are
called solitons. Solitons are non-linear waves. Under the influence of the
properties of the medium the soliton forms a structurally stable wave,
which in many ways behaves like a particle of matter.

A monochromatic wave infinite in time and space is an idealized
abstraction that does not really exist, but is part of really existing waves.

Each of them is characterized by its unchanging on average in
time and space phase𝜑 = 𝜔𝑡 − 𝑘𝑥 = 𝑐𝑜𝑛𝑠𝑡 (6.32)

The phase velocity of a wave is the speed of travel of a given
monochromatic wave packet with a given phase. Therefore, to determine
the phase velocity we differentiate in time the relation (6.32), then𝜔 − 𝑘 𝑑𝑥𝑑𝑡 = 0 (6.33)

whence, by the definition of the phase velocity𝜐 = 𝑑𝑥𝑑𝑡 = 𝜔𝑘 (6.34)

The phase velocity coincides, obviously, with the velocity of the
moving front of the monochromatic wave. If a wave propagates in a
certain direction, for example, in the direction of the Ox axis, then its
monochromatic components can move in any direction ρ such that𝜌 = х cos 𝜑 (6.35)

Let, for example, a plane wave propagate along the Ox axis with
a velocity 𝜐  (Fig. 6.2), and the component along Oρ
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Figure 6.2.
Then the phase velocity𝜐 = 𝜐cos 𝜑 (6.36)

In other words, the phase velocity can generally exceed the wave
propagation velocity 𝜐 .

If, say, the wave in question is light from a distant source that
propagates with speed 𝜐 =c, then the phase velocity may be greater than
the speed of light.

It follows from relation (6.34) that the phase velocity𝜐 = 𝜔𝑘 (6.37)

The dependence of the phase velocity on the properties of the
medium is called dispersion. It follows from (6.37) that the dispersion
can be described by dispersion equations of the form𝜔 = 𝜔(𝑘)𝑘 = 𝑘(𝜔) (6.38)𝜐 = 𝜐(𝜔) and 𝜐 = 𝜐 (𝑘) (6.39)

It is obvious that there is practically no dispersion of light in
vacuum and homogeneous media. In this case, the harmonic waves
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forming a complex wave (wave packet) propagate with the same phase
velocity, and the packet behaves as a single, strictly localized entity.
Under the influence of dispersion, packets of waves of different lengths
are blurred as each monochromatic component of the packet moves with
its own phase velocity.

The speed of the packet as a whole is called group velocity. It
follows from this definition that the group velocity is the velocity of such
a point in the wave at which the phase is the same for all wavelengths of
the harmonic components, so the group velocity must be determined from
the condition that 𝑑𝜑𝑑𝑘 = 0 (6.40)𝑑𝜑𝑑𝑘 = 𝑑𝜔𝑑𝑘 𝑡 − 𝑥 = 0 (6.41)

from which 𝜐гр = 𝑥𝑡 = 𝑑𝜔𝑑𝑘 (6.42)

Thus, in the absence of dispersion, the group velocity coincides
with the phase velocity, and the wave is monochromatic.

6.5. Properties of waves

The properties of waves are specific and differ significantly from
the properties of corpuscular bodies.

6.5.1. Transition of a wave from one medium to another

When a wave propagates in a homogeneous continuous medium
without dissipation and with constant velocity, the magnitude of energy
carried by it in a given direction does not change. However, at the
boundary of different media, the wave undergoes a number of changes.
These include reflection, dispersion, refraction, and absorption.
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Reflection is a change in the direction of wave propagation at the
boundary of two media without a transition from one medium to another.
The direction of wave propagation is determined by the angle between
the wave and the perpendicular to the boundary reconstructed from the
point of wave incidence.

Dispersion is  the  reflection  of  a  wave  from different  parts  of  a
boundary at different angles.

Absorption occurs as a result of the interaction of the wave with
the material medium, as a result of which part of the wave energy is
absorbed by the particles of matter.

Refraction is the transition of a wave from one medium to
another without absorption.

According to the Huygens principle, every point in the medium,
which is reached by the disturbance, becomes the source of the secondary
wave (Fig. 6.3). Thus, if all points of the medium are considered as point
oscillators, the perturbation transmitted by the wave to the oscillator
causes it to oscillate and it itself becomes the source of the secondary
wave.

Figure 6.3.
Let a plane wave ray beam falls on the boundary surface MN of

media 1 and 2 at an angle α (Fig. 6.4).

Secondary wave

Wave surface (front)
of the secondary
wave

Primary wave
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Figure 6.4.
The angle α is called the angle of incidence of the wave. All rays

of this beam, as mentioned above, are parallel to each other. Let rays A1A
and B1B be the outermost rays of the beam. According to the definition,
AC is the front of the incident wave. According to the Huygens principle,
all points of the AB segment of the interface become sources of secondary
spherical waves, the envelope of which DB forms the front of the
reflected wave.

This means that the reflected wave is formed by a bundle of
parallel rays lying between its outermost rays A2A and B2B, perpendicular
to its front DB. Obviously, the incident wave arrives at point B with some
time lag relative to point A, equal toΔ𝑡 = 𝐶𝐵𝜐 (6.43)

where 𝜐  is the velocity of wave propagation in the medium 1.
At the moment when the wave arrives at point B, the secondary

wave at point A is already a hemisphere with a radius of𝐴𝐷 = 𝜐Δ𝑡 (6.44)

Let us consider triangles ADB and ACB. It is not hard to see that
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Δ𝐴𝐷𝐵 = Δ𝐴𝐶𝐵 (6.45)

because they are (by definition) right triangles with a common
hypotenuse AB and with equal legs AD = BC. From equality (6.45) it
follows, therefore, that the angle of incidence α is equal to the angle of
reflection γ. The result is called the law of reflection. Let us now assume
that part of the incident wave passes from medium 1 to medium 2, having
undergone refraction. We denote the angle of refraction by βBE. It is the
front of the refracted wave, the outermost rays of which are AA3 and BB3.
Let us consider ΔACB and ΔAEB. In these trianglesB𝐶 = 𝜐 Δ𝑡 (6.46)AE = 𝜐 Δ𝑡 (6.47)

where 𝜐  is the speed of the refracted wave in the medium 2.
On the other side, 𝐵𝐶 = 𝐴𝐵𝑠𝑖𝑛∠𝐶𝐴𝐵
But ∠𝐶𝐴𝐵 = 𝛼, as angles with respectively perpendicular sides,

so 𝐵𝐶 = 𝐴𝐵 sin 𝛼 (6.48)

For the same reason𝐴𝐸 = 𝐴𝐵 sin 𝛽 (6.49)

We divide (6.48) by (6.49), then considering (6.46) and (6.47)
we obtain that sin 𝛼sin 𝛽 = 𝜐𝜐 = 𝑛 (6.50)

where n is a constant, independent of the angle of incidence α. The
resulting equality is called Snell's law of refraction

Figure 6.4 shows that the incident, reflected, and refracted waves
and the perpendicular reconstructed from the incident or reflection point
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lie in the same plane. Therefore, the laws of reflection and refraction can
be finally formulated as follows.

Law of reflection - the angle of incidence equals the angle of
reflection, with the incident and reflected rays, as well as the
perpendicular restored to the point of incidence, lying in the same plane.

The law of refraction - the ratio of the sines of the angles of
incidence and refraction (n) is a constant, independent of the angle of
incidence. This value is determined by the ratio of wave propagation
velocities in the first and second media, respectively.

The value of the constant quantity n is called the refractive index
of medium 2 with respect to medium 1. The refractive index of a medium
relative to vacuum is called the absolute refractive index. From (6.50) in
the case of a light wave we obtain for media 1 and 2, respectively𝑛 = 𝑐𝜐  𝑎𝑛𝑑 𝑛 = 𝑐𝜐  
from which 𝑛𝑛 = 𝜐𝜐 = 𝑛

The absolute refractive indices of the medium n1 and n2 are
determined by the speed of wave propagation in the medium. The
absolute refractive index of light characterizes the so-called optical
density of the medium.

The larger it is, the lower the speed of wave propagation and vice
versa. When a light wave passes from an optically less dense medium to
an optically more dense medium (for example, from air to glass) υ1 > υ2
and, therefore, n > 1, and α > β. This means that the refracted beam of
light will approach the perpendicular. Otherwise, when, on the contrary,
the beam passes from optically more dense medium to optically less
dense medium β > α, and the beam deviates more and more from the
perpendicular and approaches the horizontal. The law of refraction in this
case takes the form sin 𝛽sin 𝛼 = 𝑛
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At the critical value β = 90° and, consequently, α = αcr, the
refracted beam will go in the direction of the boundary and will not enter
the second medium. Finally, if β > 90° and α > αcr, the beam will return
to the same medium, that is, it will actually be reflected from the
interface. This phenomenon is called total internal reflection. In the
critical regime, when β = 90° , i.e. with total internal reflection, the
refractive law (6.50) takes the formsin 𝛽sin 𝛼 = 𝑛sin 𝛼 = 1𝑛⎭⎬

⎫
(6.51)

The phenomenon of total internal reflection of light is used in
fiber optics, which is a branch of physics that deals with the laws of light
propagation in transparent media

Let us assume that a beam of light propagates inside a transparent
light guide (see Fig. 6.5). Under the action of dispersion, it refracts at the
boundary of the two media and changes the direction of its motion.

Figure 6.5.
Bending the light guide also changes the direction of the beam.

Let the ray entering the light guide fall on its inner surface at an angle α.
Refracted, the ray leaves the limits of the guide and disperses. If the light
guide surface is covered by a transparent cover with refractive index n2,
lower than that of glass n1, or a light guide is made with variable refractive
index, which gradually decreases from the axis to its surface, then, taking
into account (6.51), a total internal reflection occurs and the ray, reflected
many times from the cover or curved towards the axis, does not leave the
light guide (Fig.6.6)

beam of light
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Figure 6.6.
In a curved light guide (see Fig. 6.7) the beam also does not go

beyond the light guide and is not scattered, which allows the use of light
guides to transmit light signals over long distances or to penetrate the
vision in places difficult for visual inspection. Due to these properties,
light guides have found wide application in communication engineering,
medicine and many other branches of technology and in everyday life.

Figure 6.7.

6.5.2. Wave interference

When wave processes interact, the amplitude of the resulting
wave depends in a complex way on the phase shift, amplitudes, periods,
and lengths of the interacting waves. Let us consider, for example (Fig.
6.8), the result of adding two waves q1 and q2 with the same frequency,
amplitude and length, but with opposite phases shifted by π/2 or by
(2n+1) π /2, where n = 0,1,2, ... Then𝑞 = 𝐴 cos 𝜑𝑞 = 𝐴 cos 𝜑 + 𝜋2 (6.52)

light guide

cover

light guide

cover
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Figure 6.8.
This diagram shows that the resulting wave q = q1 + q2 = 0.
When adding two waves whose phase shift is zero or multiple of

2π, the resulting wave is equal (Fig. 6.9)
q = q1 + q2.

Thus, the two waves can mutually weaken and even cancel each
other out as well as amplify

Figure 6.9.
Since light is not emitted simultaneously by different atoms,

natural light is a mixture of light waves with different phases. When
added together, these waves produce a resultant wave of light with some
average amplitude. Directed at the screen, it illuminates it evenly with
medium intensity. However, if we artificially provide a constant phase
shift of two monochromatic waves of the same length, then, when added
together, they strengthen or weaken each other. The screen will show
maximum light at some points and minimum light at others. So, for
example, if we direct two such rays, shifted in phase by π/2, to a point on
the screen, instead of a light spot we get a dark spot. Waves with a
constant (unchanging) phase shift in time are called coherent. The result
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of adding coherent waves is called interference. The pattern of light
distribution appearing on the screen is called an interference pattern.

The interference pattern is determined by the difference between
the distances (travel difference) that the coherent waves travel from the
sources to the screen. If these distances are denoted by d1 and d2,
respectively, then the travel difference

Δd=d1-d2 (6.53)

If the difference of path is equal to the wavelength A or a
multiple of the wavelengths, then these waves, adding up, give
maximums on the interference pattern. Thus, the condition for the
appearance of maxima

Δd=kλ, where k = 0, 1, 2,… (6.54)

If the difference is half the wavelength X/2 or an odd number of
half-waves, the waves cancel each other out and give minima in the
interference pattern. The condition for the occurrence of minima will beΔ𝑑 = (2𝑘 ± 1) 𝜆2 , 𝑤ℎ𝑒𝑟𝑒 𝑘 = 0,1,2, … (6.55)

There are a number of ways to produce coherent waves. If, for
example, a ray of light is sent to the surface of a transparent plane-parallel
plate, part of the wave will be reflected from this surface, and another
part, having refracted, will be reflected from the inner surface and, having
refracted again, will leave the plate as a ray parallel and coherent to the
original ray (Fig. 6.10).

Figure 6.10.

rays 1 and 2 are coherent
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6.5.3. Wave diffraction

Waves, as the French physicist Augustin-Jean Fresnel first
showed, propagate in a straight line. To justify this fact, Fresnel
combined the Huygens principle with the idea of secondary wave
interference. According to Fresnel's assumption, the wave surface at any
moment of time is not simply an envelope of secondary waves, as follows
from the Huygens principle, but is the result of their interference.

To calculate the amplitude of a wave at any point in space, it is
sufficient to imagine a wave source surrounded by a closed surface and
to calculate the interference of waves from secondary sources located on
that surface.

Let a spherical wave from a point source S, reaches an arbitrary
point B of space (Fig. 6.11).

Figure 6.11.
Let's surround the source S with an arbitrary sphere surface of

radius R. We connect points S and B with a straight line that intersects
the spherical surface at point C.

Let us consider any secondary source on the surface located on
one side of the straight line SB. Then there is always such a coherent
source on the other side of it so that the waves from both sources cancel
each other out. This means that only a wave of light propagating along
the line CB from point C or from its small vicinity will arrive at point B.

The rectilinear propagation of light waves can be observed by
looking at the shadow that appears behind any object in the path of the
light emitted by the source (see Fig. 6.12). On the other hand, when a ray
of light is emitted along the wall of a building, the observer who is around
the corner of it does not see this ray (Fig. 6.13).
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Figure 6.12.

Figure 6.13.
This is not true for all types of waves. For example, a sound wave

somehow penetrates around the corner of a building, and the sound
emitted by the source is heard around the corner. This example suggests
that waves can, under certain conditions, bend around obstacles and
deviate from a straight-line propagation. The deviation of waves from a
straight-line propagation is called diffraction.  Diffraction  of  light  was
first observed by Thomas Young. An illustration of Young's experiment
is shown in Figure 6.14.

Figure 6.14.

S

object shade

source

light source building

observer
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A narrow beam of light passing through a small hole A in screen
1 illuminates screen 2, in which there are two small holes B and C.
Passing through these holes, the light divides into two coherent beams,
which overlap each other in a certain area.

As a result, the spherical wave coming from hole A excites
secondary coherent waves in holes B and C. Due to diffraction, light
comes out of B and C in two cones, which partially overlap and interfere.
Therefore, an interference pattern in the form of alternating light and dark
stripes appears on screen 3. When one of the holes is closed, the
interference pattern disappears, which fully confirms Fresnel's theory.

The original optical device that allows to observe as well as to use
the diffraction of light is the diffraction grating, which is a set of narrow
slits cut out on an opaque base. The number of slits in the diffraction
grating is very large. Usually they are located with a frequency of 3 - 4
thousand per 1 mm (Fig. 6.15).

Figure 6.15.
Let us direct a parallel beam of light 1 of wavelength λ onto the

diffraction grating. Secondary waves arising on the slits of grating 2
propagate in all directions. Let us choose one of them, given by the angle
φ to the horizon. The difference of travel between two coherent waves
coming from neighboring slits (see Fig. 6.15),𝐵𝐶 = 𝑑 sin 𝜑 (6.55)

Lens 3 is used to focus these waves at point K on screen 4.
According to the condition of maxima𝑑 sin 𝜑 =  𝑘𝜆, where k = 0,1,2..., (6.56)
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Figure 6.16.
A bright spot appears at point K. Obviously, there are a number

of angles φi for which dark spots alternate with light spots at the
corresponding points on the screen. Alternating light and dark rings
appear on the screen from all the slits (Fig. 6.16). As follows from (6.56),
the greater λ, the greater the distance between the maxima and the greater
the deviation of the wave from straightness, its ability to skirt obstacles.
In other words, the size of obstacles that are enveloped by waves as a
result of diffraction must be of an order smaller than or equal to the
wavelength. This explains why light waves of very short length cannot
circle the building in the example above, while long wavelength sound
waves easily circle it.

A diffraction grating can be used to make very precise
measurements of the wavelength of light. If the grating period d is known,
then, by measuring the angle φk indicating the direction to the k-th order
maximum, we can determine λ from (6.56)𝜆 = 𝑑 sin 𝜑𝑘 (6.57)

6.5.4. Dispersion

Above (section 6.4) we defined wave dispersion as the
dependence of wave speed on frequency or wave number (wavelength).
On the other hand, considering the refraction of waves, we concluded that
the speed of wave propagation in a medium is inversely proportional to
the refractive index of that medium. It follows that the refractive index is
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a function of wavelength, i.e. different monochromatic waves refract
differently.

According to quantum theory, the speed of propagation of
monochromatic light is proportional to wavelength. In other words, the
speed of propagation of red light is greater than the speed of violet light.
It follows that the red light beam is less refracted than the violet light
beam. This fact was experimentally established even by Newton. He also
suggested using the phenomenon of dispersion to decompose white light
into its constituent monochromatic waves. The device proposed by
Newton for this purpose turned out to be simple enough and contained a
triangular glass prism, a screen, and a source of white light emitting
beams of parallel rays (Fig. 6.17). Let us consider the course of one of
these rays falling on the face of a prism in the direction parallel to its base
AB. As the light wave passes from air to glass, it is refracted so that the
beam approaches the perpendicular MN reconstructed to the face from
the point of incidence C.

Figure 6.17.
Since white light contains the entire spectrum of colors of visible

light (which was also experimentally proved by Newton), each of them
is refracted differently. The strongest refraction is the violet ray 1, and
the weakest is the red ray 2. Secondarily refracted on the second inner
face, rays 1 and 2 diverge even more, and the whole spectrum of colors
from red to violet appears on the ED screen.

Red
Yellow
Green
Blue
Violet

E
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The screen naturally has all the intermediate colors as well, so that
the red color transitions smoothly into purple.

The phenomenon of decomposition of white light into its
constituent monochromatic waves, each of which is perceived by its
color, Newton called the dispersion of light,  and  the  entire  gamut  of
colors - a continuum spectrum of white light.

The dispersion of light explains the variety of colors in nature.
Each object seems to be colored in the corresponding color because
different substances have the property of reflecting some colors and
absorbing others. For example, grass and tree leaves appear green to us
because they reflect light with a wavelength that corresponds to the green
color, while they absorb the rest. Sunlight scattering from particles in the
upper atmosphere decomposes into its constituent colors (disperses) on
these particles. The latter absorb light of all colors except blue, which
they reflect. This is why the sky appears blue to us.

6.5.5. The Doppler effect

It is known from everyday experience that if the observer and the
source of the sound wave move relative to each other or relative to the
medium in which the wave process propagates, then the frequency of the
wave (sound pitch) perceived by the observer differs from the frequency
of the wave emitted by the source.

The dependence of the perceived frequency of a wave on the
speeds of the source and the observer is called the Doppler effect.

In the case of mechanical waves, which carry medium
perturbations, the Doppler effect is determined by the velocities of the
observer and the source relative to the medium in which the wave
propagates. In the case of non-mechanical waves, which do not carry a
disturbance of the medium, but only a disturbance of some physical
quantity, the Doppler effect is determined only by the relative speed of
the source and the observer.

* For simplicity, let us assume that the observer M is connected
to the stationary system K, and the wave source S is connected to the
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moving system K'. Let us also assume that the source and the observer
can move away from each other or get closer to each other.

In this connection, let us consider a conditionally stationary
reference frame K and a frame K' whose axes are parallel to the axes of
the frame K. Let the system K' move with respect to the system K
progressively from left to right along the axis O with a constant velocity
b (see Fig. 6.18a)

Figure 6.18.
Let, furthermore, the source of the wave S is moving away from

the observer M. Let us assume that at the initial moment t1 the source is
at point x1 of the system K (see Fig. 6.18b). In time (t1 -t2), the wave
passes to the point (x2,t2), and propagates with speed c, passing in the
system K a segment of path

с(t1 - t2).
At the same time, the system K' takes a path relative to the

system K
υ(t1 - t2).

Then (see Fig. 6.18b)𝜆 = 𝑐(𝑡 − 𝑡 ) + 𝜐(𝑡 − 𝑡 ) = (𝑡 − 𝑡 )(𝑐 − 𝜐) (6.58)

In the general case according to the Lorentz transformation in
accordance with the theory of relativity (see Section 3.3)
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𝑡 − 𝑡 = (𝑡 − 𝑡 ) + 𝜐(𝑥 − 𝑥 )𝑐1 − 𝜐𝑐 (6.59)

The dashed values correspond to the coordinate and time in the
K' system. Since the source is connected to the system K', then

x'2=x'1, and t'1-t'2=T
Substitution in (6.59) gives𝑡 − 𝑡 = 𝑇1 − 𝜐𝑐 (6.60)

Further, it is obvious that𝜆 = 𝑐𝑇 = 𝑐𝑣𝑇 = 1𝑣 (6.61)

where
v is the emitted frequency of the wave;
v' is the observed frequency.

Substituting (6.61) into (6.60) gives

𝑣 = 𝑣′ 1 − 𝜐𝑐1 + 𝜐𝑐 (6.62)

It follows from (6.62) that at the mutual distance of the source
and the observer

v <v', and λ > λ'
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If the source and the observer approach each other, then the
velocity b reverses its direction. To get the connection between v and v'
in this case it is enough to change υ to (-υ) in the relation (6.62), and then

𝑣 = 𝑣′ 1 + 𝜐𝑐1 − 𝜐𝑐
v > v', and λ < λ'

(6.63)

Thus, the Doppler effect is reduced to a shift of the perceived
frequency of the wave toward the long-wave part of the spectrum when
the source and the observer are mutually distant. On the contrary, with
mutual convergence - towards the shortwave part. It is easy to show that
if the angle between the observer's line and the direction of the source
relative to the observer is 𝜃 ≠ 0, then

𝑣 = 𝑣′ 1 − 𝜐𝑐1 + 𝜐𝑐 cos 𝜃 (6.64)

When 𝜃 = 0, i.e., when the source and the observer are mutually
distant, the relation (6.64) coincides with (6.62). At 𝜃 = π, i.e. at their
mutual convergence, the relation (6.64) coincides with (6.63).

The relations (6.62), (6.63) and (6.64) take into account the effect
of relativity of space-time, which follows from the theory of relativity.
Therefore, these formulas are suitable for calculating the impact of the
Doppler effect in optics. As follows from these formulas, in optics, the
Doppler effect becomes perceptible when the source and observer move
relative to each other at a speed b close to the speed of light. When the
speed b is far from the speed of light, the Doppler effect can only be
detected with very sensitive and accurate instruments.

This is how the "red shift" (shift towards long waves) in the
emission spectra of distant galaxies was discovered in the twenties of the
19th century, which was interpreted by the American astronomer Edwin
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Powell Hubble as a consequence of these galaxies "escaping" from the
observer. This was the first experimental confirmation of the expansion
of the Universe.

In the case of mechanical (acoustic) waves at low velocities of
their propagation, instead of the Lorentz transformation, the Galileo
transformation applies. This transformation can be achieved by dividing
the obtained relations by the relativistic coefficient

1 − 𝜐𝑐
In this case, the relation (6.64) takes the form𝑣 = 𝑣′ 11 + 𝜐𝑐 cos 𝜃 (6.65)

If we take into account that in the general case the source and the
observer move with different velocities relative to the medium at different
angles, then equation (6.65) takes a more complex form, which is given
without proof

𝑣 = 𝑣′ 1 − 𝜐𝑐 cos 𝜃1 − 𝜐𝑐 cos 𝜃 (6.66)

where  υ1 and υ2 are the source and observer velocities, respectively
relative to the medium;

θ1 and θ2 are, respectively, the angles between the vectors 𝜐  и �⃗�  at the
moment in question.

6.5.6. Radiation

The process of propagation and transmission of waves created by
oscillation sources from one point in space to another is called radiation.
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Sources that excite waves are called emitters. Sound emitters, in
particular, are devices designed to excite sound waves in various media.
Sound emitters are divided into electroacoustic transducers, converters of
energy of elastic vibrations into sound, gas-jet and hydrodynamic
emitters, as well as musical instruments, noise devices, sound-producing
apparatus of humans and animals, etc.

The emitters of electromagnetic waves are charges moving with
acceleration, or bound charges (electrons bound in atoms), and on larger
scales, antennas and other emitters.

Let us consider in more detail the theory of electromagnetic wave
radiation. The simplest source of electromagnetic wave radiation is a
point electric charge.

As follows from Maxwell's electromagnetic field theory,
electromagnetic waves are emitted only by an accelerated moving charge.
The instantaneous power of radiation N of such a charge is given without
derivation 𝑁 = 𝜇 𝜇6𝜋𝑐 𝑎 (6.67)

Where𝜇  is the magnetic constant (see Appendix 5);𝜇 is the magnetic permeability;
e is the magnitude of the charge;
a is the acceleration of the charge.

Radiation arising from the braking of a charge in a substance is
called braking radiation. Radiation from a charge moving with
acceleration in a magnetic field is called synchrotron radiation. If the
charge performs harmonic oscillations, then in the one-dimensional
version𝑥 = 𝐴 sin 𝜔𝑡 ; 𝑎 = �̈� = −𝐴𝜔 sin 𝜔𝑡 = −𝜔 𝑥 (6.68)

Substituting (6.68) into (6.67) gives
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𝑁 = 𝜇 𝜇𝑒6𝜋𝑐 𝜔 𝑥 (6.69)

Maxwell's theory shows that the simplest oscillatory system is an
electric dipole with a shoulder l and a variable dipole moment d, which
varies according to the periodic law𝑑 = 𝑑 sin 𝜔𝑡

In this case𝑁 = 𝜇6𝜋𝑐 𝜔 𝑑 (6.70)

Real emitters usually contain a large number of charges or many
particles comprising these charges. However, those charges that are
located away from the emitter have little or no effect on its emission. This
makes it possible to replace the true charge distribution with an
approximate one, and to replace the entire charge system with a single
dipole, whose radiation is described by the relation (6.70). The theory of
radiation proves that replacing a real emitter of electromagnetic waves
with a radiating dipole is valid only if it is assumed that the arm of the
dipole l

l << λ.
In engineering, the device for radiating (or receiving)

electromagnetic waves is the antenna of a radio apparatus. The dipole
antenna (see Fig. 6.19) was first constructed and used by Hertz. He
achieved with its help the emission of electromagnetic waves in the range
of lengths λ = 0.6-10 m, which corresponds to frequencies v = (0.5 - 0.03)∙103 MHz. The experimentally measured frequency of the wave emitted
by the Hertz dipole antenna coincided with the obtained frequency from
relation (6.70) with a fairly high accuracy.
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Figure 6.19.
Thus, in the works of Hertz, Maxwell's theory was brilliantly

confirmed.
Meanwhile, by the beginning of the 20th century, it became clear

that classical electrodynamics, based on Maxwell's electromagnetic
theory, was unable to explain the experimentally established patterns in
the radiation spectra of atoms.

It turned out, in particular, that the radiation spectrum of atoms is
not continuous, as it followed from the classical theory, but discrete, or,
as they say, line spectrum. It was also found that the radiation of atoms
is not described by the relation (6.67), but, at least for hydrogen-like
atoms, by the experimentally derived Rydberg formula1𝜆 = 𝑅𝑍 1𝑛 − 1𝑚 (6.71)

where
λmn is the wavelength observed in the spectrum;
R is the Rydberg constant;
Z is the positive charge of the nucleus;
m, n = 1, 2, 3, ...are natural numbers.

As follows from (6.71), each given atom in the radiation spectrum
corresponds to a well-defined line (or a set of lines) which always
occupies the same place in the spectrum and has a coloring corresponding
to a given wavelength λmn.

In the same way, the classical theory, based on Rutherford's so-
called planetary model of the atom, could not explain the stability of
atoms observed in practice. According to Rutherford's model, negatively
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charged electrons rotate around the positively charged nucleus of the
atom, the number of which is equal to the charge of the nucleus.
According to Maxwell's theory (see 6.67), electrons, rotating around the
nucleus of the atom, must continuously emit electromagnetic energy.
This means that their emission spectrum must be continuous, and they
themselves, continuously decreasing energy, must fall on the nucleus.

The resulting contradictions could only be resolved within the
framework of quantum theory, the basics of which will be described in
Chapter 7. Here we will only point out that according to quantum theory
the energy of microparticles does not change continuously, but takes only
certain values that form a discrete set.

Each of these values on the scale of energies occupies a different
level. The transition of an atomic system from one energy level to another
occurs in a stepwise fashion, bypassing the energy levels that are
forbidden for it. In other words, an atom absorbs electromagnetic energy
or emits it in discrete portions, quanta. Each such quantum of energy is
equal to the value of Ε = ℏ𝜔 (6.72)

whereℏ is the Planck's constant;
ω is the cyclic radiation frequency of the atom.ℏ = 1,05 ∙ 10 J ∙ 𝑠

This quantum of electromagnetic energy is called a photon, which
has both corpuscular and wave properties. This means that photons are
characterized not only by frequency and wavelength, but also by mass
and momentum. From this point of view, light is considered both as
electromagnetic waves occupying a certain part of the radiation spectrum
and as a set of photons emitted by atoms during their transition from a
higher to a lower energy level.

Thus, according to quantum theory, all kinds of emission of
electromagnetic waves are carried out by atoms. An atom is a system
consisting of a positively charged nucleus and its associated negatively
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charged electrons. Electrons are in one of the possible discrete states at
their respective energy levels. The level with the lowest energy is called
the ground level and is stable. In the absence of external influences, the
electron can remain at this level for any length of time. All other
permitted levels are unstable or excitation levels.

If an atom absorbs a quantum of energy (a photon), then under its
influence it goes to one of the levels of excitation. Being here in an
unstable state, the atom spontaneously, after some time, usually on the
order of 10-8s, returns to the ground state and emits the corresponding
photon with energy ℇ − ℇ = 𝜔ℏ
where i, j are the initial and final transition level.

The energy of the emitted photon thus depends on its frequency
and is greater the greater the frequency. The energy of photons of the
visible light spectrum, which are emitted by external electrons weakly
bound to the nucleus, is relatively low. It increases as the bonding of the
electron with the nucleus increases, i.e., the depth of the electron shell
increases and the frequency increases (wavelength decreases). If upper
shell electrons emit low-energy photons of visible light, then inner shell
electrons emit high-energy photons of X-rays and emission of hard
gamma rays (see also clause 6.6.3)

Quantum theory proves that the radiation intensity of an atom Nij
(the intensity of lines in the spectrum) is determined by a formula close
to the classical relation (6.70), namely𝑁 = 𝜇 𝜇𝜔6𝜋𝑐 𝑑 (6.73)

The value of dij is the quantized analogue of the dipole moment.
In addition to the spontaneous radiation of the atom, there is also

stimulated radiation, which occurs when the atom absorbs an external
photon that coincides in frequency with one of the frequencies allowed
for it. In this case it is not in the ground, but in the excited state. The atom
emits a photon of the same frequency as the absorbed photon. The
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probability of stimulated emission, unlike spontaneous emission, is
proportional not to frequency, but to the intensity of absorbed photons,
i.e. their number.

6.5.7. Poynting Vector. Polarization

Non-mechanical waves, as mentioned above, include
electromagnetic and hypothetical gravitational waves. The properties of
the latter, discovered recently (in 2015), are being studied. The concept
of electromagnetic waves first appeared in Maxwell's electromagnetic
theory in the middle of the 19th century. At the end of the 19th century,
electromagnetic waves were discovered in very subtle physical
experiments by Hertz. When considering Maxwell's equations, it was
found (Section 4.2.3.3) that their solutions are described by the vector
and scalar potentials of the electromagnetic field 𝐴  and φ, which are
given by equations (4.173). Each of the four roots of these equations (Ax,
Ay, Az, φ) satisfies the d'Alembert's formula (4.174). If we consider the
electromagnetic field in a nonconductive (immaterial) medium, for
example in a vacuum, where there are no currents and free charges (𝚥 =
0, ρ = 0), then the d'Alembert's formula takes the form (see equation
4.177) 𝛻 𝑆 − 1𝛿 𝑆𝑐 𝛿𝑡 = 0 (6.74)

where Si is one of the four solutions of the d'Alembert's formulas, called
the electromagnetic wave;
c is the electrodynamic constant𝑐 = 1𝜀 𝜇 (6.75)

Substituting the values of the electrical and magnetic constant
(see Appendix 5) into (6.85) gives
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𝑐 = 3 ∙ 10 𝑚𝑠 (6.76)

From (6.74) and (6.76) we see that the value c is the speed of
propagation of the wave process of the electromagnetic field in the
vacuum. When a wave propagates in matter, the value of its speed of
propagation is 𝜐 = 1𝜀 𝜇 𝜀𝜇 (6.77)

Since 𝜀 > 1 и 𝜇 > 1, the speed of propagation of
electromagnetic waves in matter𝜐 < 𝑐 (6.78)

In other words, the value of c is the maximum possible speed of
propagation of electromagnetic field waves.

Since the potentials Ai and φ characterize, respectively, the
magnetic field 𝐻(𝑡) and the electric field 𝐸(𝑡), it follows from the
d'Alembert's formula (6.74) that these fields must be aligned for an
electromagnetic wave to occur. Considering an oscillating circuit, we
made sure that the oscillating fields 𝐸(𝑡) and 𝐻(𝑡), arising in the circuit,
are disconnected. The field 𝐸(𝑡) is concentrated in the capacitor, and the
field 𝐻(𝑡) is concentrated in the loop inductance coil. To combine these
fields, as Hertz first showed, the oscillating circuit must be opened (see
Fig. 6.20 a,b,c)
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Figure 6.20.

The force lines of the fields 𝐸 and 𝐻, in the open loop are arranged
in such a way that these fields coincide in space-time (see Fig. 6.20c).

This results in an electromagnetic wave that bounces off the
circuit under certain conditions.

The solution of the d'Alembert's formula, as shown above (see
Equation 4.180), are the so-called delayed potentials, which, as follows
from the above equation, indicate that the electromagnetic wave
propagates in time with a finite speed from one point of space to another.

It also follows from the d'Alembert's formula (6.74) that the
electromagnetic field potentials satisfy the wave equation. This, in turn,
means that the electric and magnetic field strengths uniquely associated
with the potentials must also satisfy the corresponding wave equations.
Thus, in particular, for the strength E by analogy with (6.74) in one-
dimensional approximation we can write𝜕 𝐸𝜕𝑥 − 1𝑐 𝜕 𝐸𝜕𝑡 = 0 (6.79)

The solution of equation (6.79) according to (6.12) is𝐸 = 𝜓(𝑥 − 𝑐𝑡) (6.80)

On the other hand, when solving Problem 2, Section 4.2.3.5, it is
obtained that the energy ℇ of the electromagnetic field
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ℇ = 12 𝜀 𝜀𝐸 𝑑𝑉 + 12 𝜇 𝜇𝐻 𝑑𝑉 (6.81)

The differentiation of (6.81) gives𝜕ℇ𝜕𝑡 = 𝜀 𝜀 𝐸 𝜕𝐸𝜕𝑡 + 𝜇 𝜇 𝐻 𝜕𝐻𝜕𝑡 𝑑𝑉 (6.82)

In a non-conductive medium, where 𝚥 = 0, Maxwell's 1st and
2nd equations, (see 4.160), are written in the form

𝑟𝑜𝑡𝐸 = −𝜇 𝜇 𝜕𝐻𝜕𝑡𝑟𝑜𝑡𝐻 = 𝜀 𝜀 𝜕𝐸𝜕𝑡 ⎭⎪⎬
⎪⎫

(6.83)

Substitution of
⃗  и ⃗  from ( 6.83) into equation (6.82) gives𝜕ℇ𝜕𝑡 = 𝜀 𝜀 𝐸, 𝑟𝑜𝑡𝐻𝜀 𝜀 𝑑𝑉 − 𝜇 𝜇 𝐻, 1𝜇 𝜇 𝑟𝑜𝑡�⃗� 𝑑𝑉

From the equations of vector analysis (see Appendix 3) it
follows that 𝑏, 𝑟𝑜𝑡�⃗� − �⃗�, 𝑟𝑜𝑡𝑏 = 𝑑𝑖𝑣 �⃗�, 𝑏 (6.84)

and

𝑑𝑖𝑣 �⃗�, 𝑏 𝑑𝑉 = �⃗�, 𝑏 , 𝑑𝑆 (6.85)

Applying (6.84) to (6.83), we obtain that
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𝜕ℇ𝜕𝑡 = − 𝑑𝑖𝑣 𝐸, 𝐻 𝑑𝑉 (6.86)

or, according to (6.85)𝜕ℇ𝜕𝑡 = − 𝐸, 𝐻 , �⃗�  𝑑𝑆 (6.87)

When propagating, an electromagnetic wave carries with it a flux
of electromagnetic energy ℇ. *

Let us consider an arbitrary closed surface 𝑆, within which a wave
propagates. The wave energy per elementary area dS in time dt is called
the energy flux density Y. Let us introduce the energy flux density vector𝑌. According to the definition𝑑𝑌 = 𝜕ℇ𝜕𝑡𝑑𝑆 ∙ �⃗� (6.88)

where �⃗�  is the unit vector of the area 𝑑𝑆.
From (6.87) we obtain that𝜕ℇ𝜕𝑡𝑑𝑆 ∙ �⃗� 𝑑𝑆 = 𝐸, 𝐻 𝑑𝑆,𝑌 = 𝐸, 𝐻 (6.89)

Since the vector 𝑌 determines the direction of the energy flux, it
coincides with the direction of propagation of the electromagnetic wave.

It follows from equation (6.89) that the vectors E and H of an
electromagnetic wave form a right-handed orthogonal bundle with the
direction of its propagation n. To explain, let us introduce a Cartesian
coordinate system in which the Ox axis for a one-dimensional (plane)
electromagnetic wave coincides with the direction of its propagation.
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Then the Oy axis will coincide with the direction of vector E, and the Oz
axis with the direction of vector H (see Fig. 6.22)

* This means that
Ех = EZ = 0,

Eγ = E
and 𝜕ℇ𝜕𝑥 ≠ 0 𝜕ℇ𝜕𝑦 = 𝜕ℇ𝜕𝑧 = 0

Figure 6.21.
Since according to Maxwell's second equation𝑟𝑜𝑡𝐸 = − 𝜕𝐵𝜕𝑡 (6.90)

then 𝜕𝐸𝜕𝑥 = − 𝜕𝐵𝜕𝑡 (6.91)

Let's substitute equation (6.80) in (6.91), then𝜕𝐵𝜕𝑡 = − 𝜕𝜔(𝑥 − 𝑐𝑡)𝜕(𝑥 − 𝑐𝑡) ∙ 𝜕(𝑥 − 𝑐𝑡)𝜕𝑥 = − 𝜕𝜓𝜕𝑥 (6.92)

from which
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𝐵 = − 𝜕𝜓𝜕𝑥 𝑑𝑡 = 1𝑐 𝜕𝜓𝜕𝑥 𝑑(𝑥 − 𝑐𝑡)= 1𝑐 𝜕𝜕𝑥 (𝑥 − 𝑐𝑡)𝑑(𝑥 − 𝑐𝑡)= 𝜓(𝑥 − 𝑐𝑡)𝑐 + 𝐹(𝑥) (6.93)

F(x) is an arbitrary integration function which can be determined
from the boundary conditions for induction B, namely, assuming that
when E ≠ 0, B ≠ 0 , and when E = 0, B = 0.

It follows that F(x) = 0.
Thus, from (6.93) we obtain that𝐵 =  or (𝐵 =  in the matter)

Since 𝜐 = 1𝜀 𝜀𝜇 𝜇 (6.94)

then 𝐵 = 𝐸 𝜀 𝜀𝜇 𝜇
and

𝐻 = 𝐸 𝜀 𝜀𝜇 𝜇 (6.95)

It follows from relation (6.94) that electric and magnetic fields in
a plane one-dimensional wave are always in-phase so that their
characteristics change in time and space quite equally.

Energy flux density vector𝑌 = 𝐸, 𝐻 (6.96)

is called the Poynting vector.
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From equation (6.96) there also follows another very important
conclusion, according to which electromagnetic waves are transverse.
This was proven experimentally by the observation of a phenomenon
called wave polarization. In the general case, in the process of wave
propagation, vectors 𝐸 и 𝐻 can change their directions, but along with
them should change their orientation and the plane in which they oscillate
so that the right-hand orthogonal coupling of these vectors with the
direction of wave propagation is not violated. The plane in which a vector𝐸 и 𝐻 in a given monochromatic wave vibrates is called the polarization
plane. Since any real wave consists of many elementary waves arising
under different conditions and at different times, it contains in its
composition a bundle of many elementary wave impulses, each of which
has its own polarization planes. It turned out, however, that there are ways
in which you can get a wave with a fixed plane of polarization. Such a
wave is called a polarized wave.
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6.6. Types of wave processes

It was already mentioned above that depending on the specifics of
the propagating disturbances, waves are divided into mechanical, non-
mechanical, and matter waves according to the conception of wave-
particle duality (de Broglie waves). In addition, waves are divided into
standing and running waves, wave trains, and solitons.

The following are examples of typical wave processes.

6.6.1. Standing waves

Let us consider the result of interference of coherent waves of the
same frequency and intensity propagating in mutually opposite
directions. To this end, for example, let's imagine a running wave on a
perfectly reflecting surface perpendicular to that surface. In this case,
propagating towards the incident wave, the reflected wave will be
coherent to it. Since the reflecting surface is assumed to be ideal, the
intensity of the reflected wave is equal to the intensity of the incident
wave.

Let the plane incident wave in the one-dimensional version is
defined by the wave function𝜓 (𝑥, 𝑡) = 𝐴 cos(𝜔𝑡 − 𝑘𝑥 + 𝜑 ) (6.97)

where φ01 is the initial phase of the wave.
Then the reflected wave, subject to the above conditions, has the

form 𝜓 (𝑥, 𝑡) = 𝐴 cos(𝜔𝑡 + 𝑘𝑥 + 𝜑 ) (6.98)

The addition of the wave functions of the incident and reflected
waves 𝜓  and 𝜓   results in a new wave𝜓(𝑥, 𝑡) = 𝐴[cos(𝜔𝑡 − 𝑘𝑥 + 𝜑 ) + cos(𝜔𝑡 + 𝑘𝑥 + 𝜑 )]
or
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𝜓(𝑥, 𝑡) = 2𝐴 cos 𝑘𝑥 + 𝜑 − 𝜑2 cos 𝜔𝑡+ 𝜑 + 𝜑2 (6.99)

The resulting wave, according to (6.99), is an oscillatory function
of time with a periodically varying amplitude in space, which does not
depend on time. Thus, the newly formed wave as if frozen in space, stops.
That's why it's called standing.

We denote the amplitude of the standing wave Ast. It follows
from (6.99) that𝐴 = 2𝐴 cos 𝑘𝑥 + 𝜑 − 𝜑2 (6.100)

The points of space (values of the x-coordinate) at which

Аst = 0, (6.101)

are called standing wave nodes, and the points at which Ast has  a
maximum value, 2A, are called antinodes.

It follows from (6.100) that for the nodes𝑘𝑥 + 𝜑 − 𝜑2 = (2𝑚 − 1) 𝜋2 (6.102)

and for antinodes𝑘𝑥 + 𝜑 − 𝜑2 = 2 𝜋2 (6.103)

In the latter formulas m = 0, ± 1, ±2, ±3, ±...
The standing wave length λst is the distance between two adjacent

nodes or antinodes. According to the definition, the length of the initial
traveling wave λst = λ/2. The distance between the neighboring node and
the antinode is λ/4.

In a standing wave, all particles of the medium between two
neighboring nodes (antinodes) oscillate in the same phase, but with
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different amplitudes. When passing through a node, the phase of the
oscillation changes by n as the sign of the function 𝜓(𝑘) changes.

Unlike traveling waves, standing waves do not transfer energy. In
them, only the spatial transfer of energy of one kind to another is carried
out. In this sense, the vibrations of elastic bodies can be seen as standing
waves in these bodies.

An example of standing waves is a plane sound wave inside an
air- or liquid-filled tube when the ends are closed or open. On the solid
wall, for obvious reasons, a velocity node and a differential pressure
antinode of the medium are formed. On the open end, on the contrary,
there is a velocity antinode and a pressure drop node. Therefore, the
patterns of pressure and velocity of standing waves are shifted relative to
each other by a quarter of the wavelength (see Fig. 6.22)

Figure 6.22.
Another example of standing waves can be the distribution of

electric and magnetic fields in a transmission line or waveguide with a
perfect closed or open end.

If a liquid or gas fills a limited portion of the space in a vessel, a
complex system of standing waves arises, which depends on the shape

Closed end

Open end

velocity pressure

velocity
pressure
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and size of the vessel. The frequencies of natural vibrations of these
waves are determined by their length.

Thus, for example, in a column of gas or liquid in cylindrical
vessels, standing waves are formed with the following series of natural
frequencies:

1) if both ends of the vessel are closed, then according to
(6.103), assuming that the oscillations are in-phase,𝑘𝑥 = 2𝑚 𝜋2

At x = l, where l is the length of the pipe,
kl = mπ;2𝜋𝜆 𝑙 = 𝑚𝜋2𝑙𝑐 𝑣 = 𝑚𝑣 = 𝑚𝑐2𝑙 (6.104)

2) if one end of the pipe is closed and the other end is open,
then according to (6.102) under the same conditions𝑘𝑥 = (2𝑚 − 1) 𝜋22𝜋𝜆 𝑙 = (2𝑚 − 1) 𝜋22 + 1𝑐 𝑣 = (2𝑚 − 1) 12

𝑣 = (2𝑚 − 1)𝑐 122𝑙
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𝑣 = (2𝑚 − 1)𝑐4𝑙 (6.105)

Let us consider an oscillating system capable of oscillating with
maximum amplitude under the influence of external periodic factors.
Such a system is called a resonator. The oscillations inside the resonator,
as in any elastic body, are distributed in the form of standing waves. It
can be shown that the minimum natural frequency of resonators (m = 1)
with a long thin tube, by which they communicate with the external
environment, will be

𝑣 = 𝑣 = 𝑐2𝜋 𝑆𝑙𝑉 (6.106)

where
V is the volume of the vessel (volume of the cavity of the resonator);
S is the cross-sectional area of the tube;
l is the length of the tube.

Let's further consider free standing waves using the example of a
sounding stretched string.

If you fasten a string of length l at its ends, when you excite
oscillations in it, a standing wave with two nodes (at the fastened ends)
and one antinode (between the nodes) appears. If you fasten the string at
one more point (for example, press it against a surface with your finger),
a standing wave with three nodes and two antinodes will arise in the
string. In this case, the parts of the string between two adjacent nodes can
be considered as two strings. If the string is pressed in the middle, the
length of each section is l/2, and the natural frequency of the standing
wave, according to (6.104), is doubled. It is possible to excite 3, 4, 5, etc.
natural vibrations in a string, the frequency of each of which increases by
a factor of 3, 4, 5, etc., i.e. by a multiple of the minimum frequency. Thus,
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a whole set of standing waves with multiples of natural frequencies can
be excited in the string.

A set of standing waves can be excited in an extended object of
any shape. This is exactly what happens in the resonators already
mentioned above. The lowest frequency of oscillations excited in such
objects (strings, boxes, pipes, resonators, etc.) is called the fundamental
frequency. Oscillations with the fundamental frequency are called the
fundamental tone, and oscillations with multiples of the fundamental
tone frequencies are called overtones, first, second, etc.

A perfect standing wave can only be established in the absence
of attenuation (absorption) and refraction on reflective surfaces.

Otherwise, along with standing waves, traveling waves are also
formed, delivering energy to the places of absorption and radiation.

It also follows from the above that at the distance limiting the
standing wave region, only such standing waves can be formed in which
an integer number of half-waves are stacked at length l. If this condition
is not met, the interference of counter waves produces a non-harmonic
process with irregularly changing amplitudes and phases. An oscillating
circuit is an example of a standing electromagnetic wave generator. When
the electromagnetic energy of a circuit is concentrated in an inductor coil,
it is represented as an antinode of magnetic energy, and when it is in a
capacitor, it is represented as an antinode of electrical energy.
Accordingly, in a standing wave there is a reciprocating movement of
energy between the magnetic and electric antinodes. Meanwhile, in a
travelling wave there is no mutual transformation of electric and magnetic
energy, but both types of energy are simply transported in space.
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6.6.2. Solitons

It was shown above (section 6.4) that the vast majority of
oscillatory wave processes common in Nature or created by human
creative activity are characterized by small amplitude, are described by
harmonic sine or cosine functions and are therefore linear. These include,
for example, harmonic waves of sound, light, presumably gravitational
waves, etc., as well as acoustic waves, electromagnetic waves, including
radio waves and light. Nonlinear waves, i.e. waves with increased
amplitude, are much less common in Nature. Solitons are an example of
such waves, as has been shown (see Section 6.4). Solitons are wave trains
whose crests degenerate into one structurally stable crest in the limit.

A soliton, in fact, is not a single wave, but a spectrum of waves.
However, unlike the usual wave train, the soliton includes a continuous
spectrum of an infinite number of harmonic waves, the envelope of which
is pulled down to a point and is perceived as a single wave. In the case of
soliton propagation in a homogeneous non-dispersive medium, it is, due
to its nonlinearity, very unstable and quickly collapses. The point is that
nonlinear waves differ from linear waves in that the velocity of their
different points is different, and as the point approaches the crest its
velocity increases. This initially leads to an increase in the steepness of
the wave leading edge and to its self-compression, but after a while the
crest tip overturns and the soliton is destroyed. The soliton behaves
differently in a dispersive medium. Under the action of dispersion,
monochromatic waves of different lengths forming the wave train also
move with different speeds, but in such a way that it leads to a decrease
in the steepness of the wave fronts and the blurring of the wave train,
which compensates for its self-compression at a certain dispersion.

A soliton is a wave. Like any wave, it does not carry matter, but
energy. Its energy, like all waves, is determined by the square of the
amplitude; theoretically, it can be decomposed into its constituent
monochromatic waves. At the same time, it is very similar to a particle of
matter. Like any particle, it is quite well localized, spatially stable,
behaves like a particle as a unit, moves like a particle with a small speed,
interacts with other solitons not as a wave, but as a particle, repulsing
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from them. It, as a particle, cannot quench another soliton or amplify it,
it cannot go around obstacles (it has no wave properties of interference
and diffraction).

On the basis of the formal similarity, the soliton is often confused
with the photon, although they are completely different objects. A
photon, unlike a soliton, is not a packet of an infinite number of
monochromatic waves, but a single monochromatic wave with a specific
frequency and wavelength. A free photon is not localized like a soliton,
but, on the contrary, is distributed throughout infinite space-time.
Spectrally, it appears as an infinitely thin line, while the spectrum of the
soliton is solid.

The photon exhibits all wave properties, while the soliton lacks
most of them. Photon propagates in any medium, including in vacuum,
while soliton cannot propagate in a homogeneous, non-dispersive
medium, certainly not in vacuum, etc.

Solitons can be of different physical nature. It has been proved,
for example, that dislocations (holes), which take part in the electrical
conductivity of solids, are solitons, i.e., elastic waves. Nerve impulses in
the organisms of higher animals are solitons in nature. Although, unlike
light waves, solitons cannot propagate in a vacuum, there are also optical
solitons, which have recently found applications in communication
engineering. It has already been mentioned above that light signals can
propagate by means of light guides over long distances. However, in the
process of movement in the light pipe, they still gradually dissipate so
that after every 80-100 km they fade out and have to be restored with the
help of expensive retransmission equipment. It turned out that if the light
signal is transmitted by solitons, the distance between the retransmission
centers can be up to 5-6 thousand kilometers. For this, however, the light
guide must be made with controlled dispersion. Currently, solitons have
found applications in many other fields of engineering and medicine.
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6.6.3.Electromagnetic waves. Light waves

The properties of wave processes are largely determined by their
length. The totality of the harmonic components of waves in a given range
of lengths is called the wave spectrum. Above we have already
considered the electromagnetic waves arising from the emission of atoms
belonging to different parts of the spectrum.

The entire spectrum of electromagnetic waves occupies a wide
range that extends from 105 to 10-15 m. Long wavelengths from 105 to 10-

4 m form the spectrum of radio waves, which are widely used in
engineering. Beyond radio waves there are optical spectrum waves, X-
rays, hard γ-rays, etc. Figure 6.23 shows the scale of electromagnetic
waves on a logarithmic scale.

Figure 6.23.
Conventionally, all types of electromagnetic radiation are called

light. Visible light, as seen in Figure 6.23, occupies a very narrow
spectrum between 0.45 and 0.75 μm. To the left and right of the visible
light spectrum are the broader invisible spectra of infrared and ultraviolet
light.

It has already been mentioned above that according to
electromagnetic theory, the speed of propagation of electromagnetic
waves in a vacuum is equal to the speed of light. From this Maxwell
concluded that light is inherently electromagnetic waves. The wave
nature of light was proved earlier by Huygens and Fresnel. They

radio waves

infrared waves

visible light

X-rays

ultraviolet light

γ-rays
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experimentally showed that light has all the known wave properties -
dispersion, interference, diffraction, polarization, etc. However, by
analogy with sound, light was considered as longitudinal waves
propagating in a special elastic medium, the ether. Maxwell's theory
confirmed the previously established transverse nature of light waves.
Hence the conclusion that light must have the property of polarization.
However, for a long time it was not possible to detect the polarization of
light. The fact is that light is emitted by natural sources and is, therefore,
a mixture of waves with different polarizations. It turned out, however,
that there are some crystals that are able to transmit light waves, if they
are polarized, only with a certain polarization direction. This direction is
called the optical axis of the crystal. Such crystals include tourmaline in
particular. This fact made it possible to detect the polarization of light
experimentally by passing it through a plate of tourmaline. If light really
has the property of polarization, then the plate of tourmaline must have
transmitted it only in the direction of the optical axis. To detect
polarization in this case, it was enough to pass the polarized light through
a similar second plate of tourmaline. By rotating it relative to the first
plate, we could see that in a certain orientation, when its optical axis was
perpendicular to the optical axis of the first plate, it completely blocked
the light. This means that it did not allow the light polarized by the first
plate to pass in the direction of the optical axis of the tourmaline. On the
contrary, when the optical axes of both plates are parallel, the light is
passed through the second plate. This experiment confirmed the
transverse nature of light waves and eliminated doubts about their
electromagnetic nature.

Humans have pondered the nature of light throughout their
existence. The rectilinear distribution of light, for example, was already
known to the peoples of the Middle East at least 5,000 years BC and was
used in ancient Egypt for construction. Pythagoras (6th century BC) was
one of the founders of the corpuscular theory of light. Aristotle (4th
century BC) made an ingenious guess close to modern wave theory,
believing that light is the result of excitation of the medium between the
visible object and the human eye. He was also not far from the truth when
he viewed the rainbow as the result of the reflection of light by water
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droplets. The rectilinearity of light and the laws of reflection were first
formulated by Plato's school. Euclid was the founder of geometric optics
and studied the processes of the emergence of reflection in a mirror. The
refraction of light and the path of rays in lenses were studied in the Middle
Ages. The first optical instruments appeared in the 13th century. The first
telescope was built by Galileo in 1609. The laws of refraction were first
formulated by Willebrord Snellius in 1620 and by Descartes in 1637.
Diffraction of light was discovered by the Italian scientist Francesco
Maria Grimaldi and results of his discovery was published in 1665, and
interference of light was discovered in 1669 by the Danish scientist
Rasmus Bartholin. One of the pillars of the Renaissance, the Italian
scientist and artist Leonardo da Vinci, and the English scientist Robert
Hooke, who adhered to the wave theory, were also concerned with the
nature of light. This theory was further developed in the works of
Huygens, who, like his predecessors, proceeded from the analogy of light
and sound. Newton assumed the interpretation of light as a wave process,
but gave preference to the corpuscular theory, considering light as a
stream of particles acting on ether, the concept of which as an elastic
light-carrying medium was introduced by Descartes. Kepler and
Descartes considered the speed of light to be infinite. The notion of the
finiteness of the speed of light was introduced by Hooke and Newton.
The speed of light was first measured experimentally in 1676 by the
Danish astronomer Ole Rømer. Despite Huygens' convincing work on the
wave properties of light, the corpuscular theory, based on Newton's
authority, lasted until the beginning of the 19th century. The final blow
was dealt to it by the work of the English scientist Young and the French
scientist Fresnel.

In 1801 the laws of interference were formulated, and Fresnel,
using the Huygens principle, explained the rectilinearity of light and
diffraction (Huygens-Fresnel principle). Based on the polarization of
light established in the experiments, Young and Fresnel were the first to
put forward the idea of the transverse nature of light waves. The works of
Faraday and Maxwell finally proved the wave nature of light. Hertz's
discovery of electromagnetic waves made wave electromagnetic theory
indisputable. The electromagnetic wave theory of light was further
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developed in the late 19th century in the works of the French physicist
François-Pierre Le Roux (1862), the German physicists August Kundt,
and W. Zemmeter (1872), the German physicists Paul Drude, Hermann
von Helmholtz and the Dutch physicist Hendrik Lorentz (90s of 19th
century). In 1899, Russian physicist Pyotr Lebedev discovered and
explained in terms of electromagnetic theory the pressure of light.
Finally, the wave electromagnetic theory of light served as the starting
point for Einstein's theory of relativity (1905). This, in particular, was
facilitated by the work that revealed the contradictions between Galileo's
principle of relativity and Maxwell's electromagnetic theory. As early as
1804, Young showed that the wave theory of light requires the
introduction of the idea of an absolutely stationary ether. Fresnel (1818),
François Arago (1810) and Hippolyte Fizeau (1890s), on the contrary,
proved that a number of optical phenomena (for example, independence
of the index of refraction of light from the motion of bodies) requires the
assumption of partial entrainment of the ether by moving bodies. The
same conclusion was reached by Lorentz, who in 1896 created the theory
of electrodynamics of moving media. Finally, the Michelson-Morley
experiments showed that the idea of the ether requires either a rejection
of the principle of relativity or of Maxwell's theory.

All of these contradictions were resolved in Einstein's theory of
relativity. Meanwhile, just when it seemed that the electrodynamic theory
of light had won its final victory, i.e., by the end of the 19th century and
the beginning of the 20th century, the first signs of its crisis appeared.

In particular, it turned out that this theory in explaining the
processes of emission and absorption of light contradicts the law of
conservation of energy. Analyzing this phenomenon, Planck came to the
conclusion in 1900 that the elementary vibrating system (atom, molecule)
gives or receives wave energy from the electromagnetic field not
continuously, but in portions, by photons proportional to the frequency
of oscillations. Developing the ideas of Planck, Einstein in 1905
attributed to the photons, in addition to energy, properties of mass and
momentum. He also showed that the photoelectric effect can be explained
only on the basis of the notion that electrons, absorbing photons of light,
change their motion and create an electric current of conduction
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(photoelectric current). In other words, according to the Planck and
Einstein hypotheses, the following relations take place𝐸𝜔 = ℏ𝑃 = ℏ𝜔𝑐𝑚 = ℏ𝜔𝑐 ⎭⎪⎬

⎪⎫
(6.107)

It turned out that the total volumetric radiation density ρ, equal to
the radiation energy per unit volume, and its proportional value of the
emissivity of an black body, summed over all frequencies of the
frequency range of radiation (from zero to infinity), are equal to𝑈 = 𝜎𝑇 ; (6.108)

𝜎 = 2𝜋 𝑘15𝑐 ℎ (6.109)

where
U-emissivity (power of radiation of the unit of the black body area, W
m – 2 );
σ is the  Stefan–Boltzmann constant;
k is the Boltzmann constant (1.38x 10 - 23J K– 1 );
h is Planck's constant (6.58x 10– 34 J s);
c is the speed of light in a vacuum (3x108 m s– 1 ). The law of radiation
(6.108) is called the Stefan-Boltzmann law. It is in perfect alignment with
the experiment. It made it possible to calculate the value of ℏ.

Since it follows from (6.107) thatℇ = ℏ𝜔 = ℎ𝜔2𝜋 ≅ 6,38 ∙ 10 ∙ 𝜔 (6.109)
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Einstein, based on the concept of photons, formulated his
famous law of photoelectric effect, according to whichℇ = ℏ𝜔 − ℇ (6.110)

whereℇ is the initial energy of the photoelectron;ℇ  the ionization energy of the atom.
Einstein's law resolved the so-called ultraviolet crisis.

Theoretically, the photoelectric current should depend on the degree of
illumination of the irradiated sample (the square of the wave amplitude).

In fact, when irradiating the sample with a monochromatic wave
shifted to the red side of the spectrum of any intensity, there was no
photoelectric current at all. However, when the wavelength shifted
toward the ultraviolet part of the spectrum, starting from some well-
defined wavelength value, photoelectric current occurred even in low
light. In other words, it turned out that the photoelectric current increases
with decreasing wavelength and is completely independent of the
intensity. According to Bohr, the same law applies to the emission and
absorption of energy by an atom. The hypotheses of Bohr (for the
hydrogen atom), Einstein and Planck were fully confirmed by physical
experiment and came to be regarded as scientifically proven fact.

6.6.4. De Broglie Waves

In 1912, the Danish physicist Niels Bohr, relying on the
hypotheses of Planck and Einstein, created a model of the atom,
according to which the atom emits light of appropriate wavelength X,
when under the action of absorbed energy it goes from an excited state
with energy hv, to a stationary state with energy conventionally assumed
to be zero. In this case ℇ = 𝑘𝑣 (6.111)
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The magnitude of energy hvi corresponds to the energy of the
photon, and the excitation levels form a discrete series (i = 1, 2, 3, ...).
The energy corresponding to the (i ± 1) levels is at band gap for the atom.

In 1924, the French physicist Louis de Broglie, based on the
hypotheses of Planck, Einstein, and Bohr, suggested that elementary
particles (electrons, nucleons), just like light, must exhibit both
corpuscular and wave properties. In this sense, their corpuscular
properties and wave properties must be linked by the same equations that
characterize photons. In other words, for elementary particles, as well as
for photons, according to the de Broglie hypothesis, the following
relations must take place𝜔 = ℇℏ ;  𝜆 = 2𝜋ℏ𝑃 (6.112)

Waves associated with free-moving elementary particles are
called, as mentioned above, de Broglie waves.

For low-energy particles whose relative speed is much lower than
the speed of light in a vacuum

υ << c, (6.113)

it is possible, according to (6.112), to write that𝜆 = 2𝜋ℏ𝑚𝑣 (6.114)

In other words, the wavelength compared to the particles is
inversely proportional to their mass. So, for example, the wavelength𝜆Э, which corresponds to the electron, with a high enough energy for it,
(10 -104) eV, is, according to the relation (6.114)𝜆Э = (4,0 − 0,1)𝐴 (6.115)

(Angstrom is a unit of length; 1𝐴 = 10 . This length is in the
spectrum of X-rays. As the mass of a particle increases, the wavelength
of the wave it is matched to sharply decreases. Already for a hydrogen
molecule it is equal to 𝜆 (0,07 − 0.002)𝐴. A small macroparticle with
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a mass of 1 g at a paltry energy equal to the energy of an electron, the
wavelength corresponds to k 𝜆 ≈ 10 𝐴

Waves of such short length are in principle unobservable even
with instruments of any high sensitivity and resolution. For this reason,
wave properties of macroparticles (macrobodies) cannot be detected.

De Broglie's hypothesis found brilliant experimental
confirmation. Already in 1927, in experiments by American physicists
Clinton Davisson and Lester Germer, it was found that a beam of
electrons with an energy of 100 - 150 eV with 𝜆 ≈ (1 − 1,5)𝐴 diffracts
on nickel crystals, playing the role of a diffraction lattice. Experiments
on interference and diffraction of electron beams, as well as beams of
other elementary particles, were repeated several times and always led to
the same results, which unambiguously confirmed the wave properties of
particles.

At present, wave properties of elementary particles are widely
used in practice, for example, in electron microscopes, as well as in
devices designed to study the structure of matter. Let us consider in more
detail one of many experiments on the interference of light and electron
beams using a two-slit Fresnel interferometer (see Section 6.5.3). In a
simplified version, this interferometer (Fig. 6.24) is a plate A opaque to
light with two close small holes (slits) 1 and 2, to which a beam of
monochromatic light or electrons from the source S is directed. An
interference pattern appears on the screen (indicator) B, installed to the
right of the plate A.
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Figure 6.24.
According to Fresnel, the wave falling on plate A creates

secondary coherent waves in holes 1 and 2, which continuously add up
and interfere.

Let the secondary waves coming from holes 1 and 2 be
described by the wave functions𝜓 = 𝐴 𝑐𝑜𝑠(𝜔𝑡 ± 𝑘𝑥 )𝜓 = 𝐴 𝑐𝑜𝑠(𝜔𝑡 ± 𝑘𝑥 ) (6.116)

In complex form𝜓 = 𝐴 𝑒 ( ± )𝜓 = 𝐴 𝑒 ( ± ) (6.117)

where 𝜑 = 𝑘𝑥 ; 𝜑 = 𝑘𝑥
or 𝜓 = 𝐴 𝑒𝜓 = 𝐴 𝑒 (6.118)

where 𝐴 = 𝐴 𝑒𝐴 = 𝐴 𝑒 (6.119)
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At interference, waves ψ1 and ψ2 add up so that the resulting
wave

ψ = ψ1 + ψ2.
In complex form𝜓 = 𝐴 𝑒 + 𝐴 𝑒 = 𝐴 + 𝐴 𝑒 (6.120)

In other words, the resulting amplitude𝐴 = 𝐴 + 𝐴 (6.121)

It was said above that the intensity is determined by the square
of the amplitude𝐽 = 𝐴 ; 𝐽 = 𝐴 ; 𝐽 = 𝐴 + 𝐴 (6.122)

where
J1 is the intensity of the wave that only passed through hole 1;
J2 is the intensity of the wave that only passed through hole 2;
J12 is the intensity of the wave that passed simultaneously through holes
1 and 2 and gives rise to two secondary coherent waves, which interfere
when added together.

It follows from relation (6.122) that the intensity of each
individual wave 𝐽 = |𝐴 | = 𝐴 𝐴 ∗  ( 𝐴 ∗  is the amplitude complex-
conjugate to amplitude 𝐴 ) is independent of phase and is determined by
a number expressed as the square of the actual amplitude. The intensity
of the total wave resulting from the interference of secondary coherent
waves is determined not only by the sum of the squares of the amplitudes,
but also by the phase difference of the interfering waves, i.e.𝐽 = 𝐴 + 𝐴 = 𝐴 + 𝐴 + 2𝐴 𝐴 𝑐𝑜𝑠(𝜑 − 𝜑 ) (6.123)

The quantity 2𝐴 𝐴 𝑐𝑜𝑠(𝜑 − 𝜑 ) is called the interference term.
The electron beam behaves similarly in the interference experiment. This
means that the same electron at interference simultaneously passes
through holes 1 and 2, which for a corpuscle is impossible in principle.
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On the other hand, it turns out that only a multiple number of electrons
can pass through hole 1 (with hole 2 closed) and vice versa. This means
that in the absence of interference, the electrons behave like ordinary
corpuscles.

The considered interference experience allows us to introduce a
new function ψ (r, t) of the type (6.116) or (6.117) to characterize the state
of a microparticle. In the one-dimensional version this function has the
form 𝜓(𝑥, 𝑡) = 𝑅𝑒𝐶𝑒 ( ) (6.124)

where k is the wave number.
According to relation (6.113)𝑘 = 𝑃ℏ = 2𝜋𝜆 (6.125)

where
λ is the wavelength matched to the microparticle;
π is the impulse of the microparticle

It follows from this that the behavior of a microparticle, unlike a
pure corpuscle, is nondeterministic. This manifests itself in the fact that
the same particles behave differently under the same conditions for no
reason whatsoever. In the above experiment with beams of perfectly
identical electrons, some particles pass through slit 1, while others pass
through slit 2.

It is impossible in principle to predict in advance how a given
particle will behave. Its behavior is truly random. To predict it, it is
necessary to apply a probabilistic approach. The German physicist Max
Born, considering experiments on interference of microparticles, for the
first time proposed a way to calculate the specified probability. In so
doing, he reasoned as follows.

Let an elementary volume dV spanning some point r(x,y,z) be
given. Let ip(r, t) be the wave function describing the state of the
microparticle inside this volume. Since the quantity |𝜓(𝑟, 𝑡)| , according
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to (6.122) determines the intensity of the wave, which, according to the
de Broglie hypothesis, describes the state of a microparticle, the
probability of finding a microparticle at time t inside the volume dV is𝑑𝜌 = |𝜓(𝑟, 𝑡)| 𝑑𝑉, (6.126)

The probability of detecting a microparticle at a given point r(x,
y, z) is defined from (6.126) as the value of its density𝑑𝜌𝑑𝑉 = |𝜓(𝑟, 𝑡)| (6.127)

Thus, the square of the amplitude of the wave function takes on
the meaning of the probability of detecting a microparticle at a particular
point of the volume in which this function is given. On the other hand, it
is obvious that a microparticle at time t is reliably detected in at least one
point of volume V. It follows that the probability of detecting a particle
at any point in the volume V, is equal to 1. This probability is equal to the
sum of the probabilities of detecting a particle in each of the points of the
volume V.

Thus, it follows from (6.124) that𝜌 = ∫ |𝜓(𝑟, 𝑡)| 𝑑𝑉 =1 (6.128)

The relation (6.128) is called the normalization rule for the
wave function of microparticles.

With this in mind, the wave function describing the state of the
microparticle is also called the probability amplitude.

On the other side,
ψ = ψ1 + ψ2 ,

where ψ 1, ψ2, ψ are, respectively, the amplitudes of the probabilities of a
particle passing through hole 1, hole 2, and both holes simultaneously.

Summarizing the result obtained, it can be stated that if under
given conditions a physical system can be in different states
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corresponding to wave functions ψ1, ψ2, ψ3,...ψk,..., then under the same
conditions states with a wave function are also possible

𝜓 = 𝑐 𝜓 (6.129)

where ck are some complex numbers.

6.6.4.1. Time-independent Schrödinger equation
De Broglie waves describe the state of a particle only in the case

of its free motion. Accordingly, the equation that the de Broglie wave
satisfies is also compared to the free motion of a microparticle with
constant energy g and momentum𝑃 = √2𝑚ℇ

It follows from (6.24) that the wave function describing a de
Broglie wave in the one-dimensional version in the complex form is𝜓(𝑥, 𝑡) = 𝐴𝑒 ℏ
or 𝜓(𝑥, 𝑡) = 𝐴𝑒 𝑒 ℏ = 𝐴𝑒 ℏ

In the case of fixed time, when 𝐴 = 𝑐𝑜𝑛𝑠𝑡, the wave function𝜓(𝑥) satisfies the wave equation, which is obtained from the equation of
free oscillations (see Section 5.1.2) by replacing t by ω and o by k. Since,
according to (6.125) 𝑘 = 𝑃ℏ
then the one-dimensional wave equation for the function y/(x) describing
the de Broglie wave at a given time takes the form𝑑 𝜓(𝑥)𝑑𝑥 + 𝑃ℏ 𝜓(𝑥) = 0 (6.130)
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or 𝑑 𝜓𝑑𝑥 + 2𝑚ℇℏ 𝜓 = 0 (6.131)

Let us consider a microparticle moving in a stationary external
field U(x) with constant energy ℇ. For a given particle according to the
law of conservation of energy𝑝 = 2𝑚[ℇ − 𝑈(𝑥)]

The wave equation in this case takes the form𝑑 𝜓𝑑𝑥 + 2𝑚[ℇ − 𝑈(𝑥)]ℏ 𝜓 = 0 (6.132)

Equation (6.132) is written for a fixed time and is therefore
called the stationary Schrödinger equation in honor of the Austrian
physicist Erwin Schrödinger, who first proposed and studied it.

In the general case of three-dimensional particle motion, the
time-independent Schrödinger equation takes the form− ℏ2𝑚 Δ𝜓 + 𝑈(𝑥, 𝑦, 𝑧)𝜓 = ℇ𝜓 (6.133)

where Δ𝜓 is the Laplace operator
The time-independent Schrödinger equation describes the

behavior of a microparticle, at a given moment in time, in a stationary
external field 𝑈(𝑟).This state is determined by the type of external field
and the value of the wave function at its boundaries. Let us consider the
stationary states of a particle for a number of very important types of one-
dimensional fields of a given configuration.

1. Potential wall
A one-dimensional potential wall is an idealized potential field

U(x) that satisfies the following conditions𝑈(𝑥) = 0              𝑥 < 0𝑈    0 ≤ 𝑥 < ∞ (6.134)
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The potential wall is shown in Fig. 6.25. Let us first consider the
case where the energy of the particle ℇ = ℇ > 𝑈

A potential wall generally forms a barrier for a free-moving
microparticle. The case in question is called over-barrier passage. Let's
assume that the particle moves from left to right. In the region of x<0, the
value of U(x) = 0 and the one-dimensional Schrödinger equation has the
following form

Figure 6.25.𝑑 𝜓(𝑥)𝑑𝑥 + 2𝑚ℇℏ 𝜓(𝑥) = 0 (6.135)

where 2𝑚ℇℏ = 𝑘 (6.136)

The general solution of the resulting equation, as we know, can
be written as follows𝜓(𝑥) = 𝜓 + 𝜓 = 𝐶 𝑒 + 𝐶 𝑒 (6.137)

The first term of this equation describes the wave incident on the
wall, and the second term of the equation, as is easy to see, describes the
reflected wave.
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Thus, even though the particle moves over the barrier, it is
partially reflected from the wall.

Obviously, this behavior of the particle is a consequence of its
wave properties. For a corpuscle this is impossible in principle.

In the region x ≥ 0, the Schrödinger equation is modified and
written in the form𝑑 𝜓(𝑥)𝑑𝑥 + 2𝑚(ℇ − 𝑈 )ℏ 𝜓 = 0 (6.138)

where 2𝑚(ℇ − 𝑈 )ℏ = 𝑘 (6.139)

The solution of equation (6.139) will be, as in the case (6.136),𝜓(𝑥) = 𝐶 𝑒 + 𝐶 𝑒 (6.140)

Since, however, there can only be a passing wave in the region x
≥ 0, then 𝐶 = 0 and𝜓(𝑥) = 𝐶 𝑒 (6.141)

* It follows from physical considerations that the wave function
and its derivatives are continuous everywhere.

Substituting x = 0 into the continuity condition gives𝐶 + 𝐶 = 𝐶𝑘(𝐶 − 𝐶 ) = 𝑘 𝐶 (6.142)

Solution of equation (6.142), taking into account that the
reflection coefficient 𝑅 = |𝐶 ||𝐶 |
gives
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𝑅 = |𝐶 ||𝐶 | =  (𝑘 − 𝑘 )(𝑘 + 𝑘 ) (6.143)

Assuming that the transmission coefficient is equal to
D = 1 - R

We find thatD =  1 −  R = 4𝑘 𝑘(𝑘 + 𝑘 ) (6.144)

In the case of ℇ = ℇ < 𝑈 (6.145)

then 𝑘 < 0
This means that the value of k1 is an imaginary number. In this

case, the wave function for the traveling wave at x ≥ 0𝜓(𝑥) = 𝐶 𝑒 | | (6.146)

In other words, the probability of detecting a particle whose
energy is less than the height of the wall barrier on the right side of the
wall is not zero, but quickly fades so that it can in principle only be
detected near the wall (Fig. 6.26)

Figure 6.26.
2. Rectangular potential barrier
A rectangular potential barrier (Fig. 6.27) is an idealized one-

dimensional potential field that satisfies the following conditions
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𝑈(𝑥) = 0              𝑥 < 0𝑈       0 ≤ 𝑥 ≤ 10              𝑥 > 1 (6.147)

Figure 6.27.
Let a microparticle with energy 0 < ℇ < 𝑈   move from left to

right.
Outside the potential barrier, in the regions x < 0 and x > l, the

time-independent Schrödinger equation coincides with equation (6.135).
At the same time, if

х < 0,
then 𝜓(𝑥) = 𝐶 𝑒 + 𝐶 𝑒 (6.148)

and if
х > 1,

then 𝜓(𝑥) = 𝐶 𝑒 + 𝐶 𝑒 (6.149)

where 𝑘 = √2𝑚ℇℏ
Inside the barrier, in the region 0  <  x  <  1, the Schrödinger

equation coincides with equation (6.138), and the wave function
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𝜓(𝑥) = 𝐶 𝑒 + 𝐶 𝑒 (6.150)

where

𝑘 = 2𝑚(𝑈 − ℇ)ℏ (6.151)

The wave outside the barrier, in the region x > 1, is only a passing
wave and corresponds to a particle that moves in this region from left to
right, so here C4 = 0, and 𝜓(𝑥 > 𝑙) = 𝐶 𝑒

In the region of x < 0𝜓(𝑥 < 0) = 𝐶 𝑒 + 𝐶 𝑒
In other words, a particle hitting a barrier corresponds to two

waves, the incident and reflected ones. As in the case of a potential wall,
the incident wave penetrates the region of the potential barrier, 0 ≤ x ≤ l,
in which it becomes damped. However, after reaching the wall x = l, the
wave passes beyond the potential barrier and penetrates into the region x
>  l,  where  k2 >  0.  Therefore,  in  the  region  x  >  1,  it  again  acquires  its
periodicity and then propagates as a undamped traveling wave with lower
intensity, as shown in Figure 6.28.

From the condition of continuity

𝐶 + 𝐶 = 𝐶 + 𝐶𝑘(𝐶 − 𝐶 ) = 𝑘(𝐶 − 𝐶 )𝐶 𝑒 + 𝐶 𝑒 = 𝐶 𝑒𝑘 𝐶 𝑒 − 𝑘 𝐶 𝑒 = 𝑗𝑘𝐶 𝑒 ⎭⎬
⎫

(6.152)

Figure 6.28.
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* Solving the system (6.152), we obtain that
1) reflection coefficient in the region x < 0𝑅 = |𝑏 | = |𝐶 ||𝐶 |
2) probability of particle permeation through the barrier𝐷 = |𝑎 | = |𝐶 ||𝐶 |

at the same time 𝑎 = −𝑗 4𝑘 𝑘𝑒(𝑘 − 𝑗𝑘) 𝑒
and 𝐷 = −𝑗 16𝑘 𝑘(𝑘 − 𝑘 ) 𝑒 (6.153)𝐷 ≈ 𝑒 (6.154)

It follows from (6.153) that the degree of particle penetration
through the barrier decreases exponentially with increasing barrier width.
The phenomenon of a particle leaking through a potential barrier is called
the quantum tunnelling.

3. Potential well
Let U(x) = 0 in the bounded space from x = 0 to x = l (Fig. 6.29a).

If the energy of a particle moving in the positive side of the Ox axis over
the potential well is ℇ > 0, then the probability of its reflection from the
walls of the potential well, as was found above, is not zero. The energy
of the particle above the well has a continuous emission spectrum
everywhere.

The particle behaves differently inside the potential well, where
its energy ℇ < 𝑈(𝑥)

It was found above that outside the well, the sides of which can
be regarded as potential walls, the wave function should damp down. To
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determine the damping conditions, let us find the solution of the
Schrödinger equation outside and inside the potential well. To simplify
the problem, we consider an idealized one-dimensional potential well of
infinite depth (Fig. 6.29b).

Figure 6.29.
As can be seen from the figure, the boundary conditions for such

a well take the form

𝑈(𝑥) → +∞         𝑥 < 00       0 ≤ 𝑥 ≤ 𝑙+∞          𝑥 > 𝑙 (6.155)

Let us find a solution of the Schrödinger equation for each of
these three regions, assuming that ℇ > 0.

In the region of x < 0𝑑 𝜓𝑑𝑥 − 𝑎 𝜓 = 0 (6.156)

where 𝑎 = 2𝑚ℏ (𝑈 − ℇ) > 0 (6.157)

The solution to equation (6.156) is𝜓 = 𝐶 𝑒 + 𝐶 𝑒 (6.158)

Since x < 0 and k > 0, then at 𝑥 → −∞
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𝑒 → 0, 𝑎𝑛𝑑 𝑒 → ∞ (6.159)

On the other hand, the wave function must be finite everywhere.
This requires that C2 = 0 . Hence, taking into account (6.159), we obtain
that with fast damping,𝜓(𝑥 < 0) → 0 (6.160)

We obtain the same result obviously for the region x > l𝜓(𝑥 > 𝑙) → 0 (6.161)

For the region 0 ≤ 𝑥 ≤ 𝑙
takes place 𝑑 𝜓𝑑𝑥 + 𝑘 𝜓 = 0 (6.162)

Where 𝑘 = 2𝑚ℇℏ > 0 (6.163)

The solution of equation (6.162) is thus a harmonic function (see
Section 5.1) 𝜓(𝑥) = 𝐴 sin(𝑘𝑥 + 𝜑) (6.164)

Since this function is zero at the boundaries x = 0 and x = l, it is
necessary and sufficient that𝐴 sin 𝜑 = 0𝐴 sin(𝑘𝑙 + 𝜑) = 0 (6.165)

From the first equation it follows that φ = 0, so𝐴 sin 𝑘𝑙 = 0 (6.166)
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Since A ≠ 0 (otherwise 𝜓(х)  ≡  0 in the entire region from+ ∞ до − ∞, which would indicate the absence of the microparticle in
the potential well), thensin 𝑘𝑙 = 0 (6.167)

From which𝑘 = 𝜋𝑙 𝑛, 𝑤ℎ𝑒𝑟𝑒 𝑛 = 0,1,2,3, … (6.168)

Substituting (6.168) into (6.163) gives2𝑚ℏ ℇ = 𝜋𝑙 ∙ 𝑛 (6.169)

or ℇ = 𝜋 ℏ2𝑚𝑙 ∙ 𝑛 (6.170)

Thus, when a particle is in a potential well, its energy takes on
only discrete values ℇ , ℇ , ℇ , … The natural number n = 1,  2,  3,  ... is
called the quantum number. The quantum number determines the
energy state or allowed energy level of a particle inside a well. The result
is called quantization. Quantization thus means that the energy spectrum
of a particle inside a potential well is discrete.

To determine the amplitude A of the wave function ψ(x), we use
the rule of its normalization (6.128), according to which (in the one-
dimensional case)

|𝜓(𝑥)| 𝑑𝑥 = 1 (6.171)

Since outside the pit 𝜓(𝑥) = 0, (6.171) takes the form i
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|𝜓(𝑥)| 𝑑𝑥 = 1 (6.172)

Substitution 𝜓(𝑥) from (6.164) into (6.172) taking into account
(6.165) and (6.155) gives

𝐴 sin 𝜋𝑛𝑙 𝑥 𝑑𝑥 = 1 (6.173)

from which

𝐴 = 2𝑙 (6.174)

At 0 ≤ x ≤ l

𝜓 (𝑥) = 2𝑙 sin ± 𝜋𝑛𝑙 𝑥 (6.175)

where n = 1,2,3,...
Outside the potential well, the wave function is zero. The nominal

value of the energy state at n = 1 is the minimum possible. This state is
called the basic state. When n = 2, 3, ... the state is called excited. It also
follows from (6.175) that for ℇ <  0  the problem has no solution. It can
be shown that the results obtained are true not only for one-dimensional,
but also for three-dimensional barriers and potential wells.

An example of the state of a microparticle of matter inside a
potential well is an electron bound inside an atom. Such an electron is
known to be under the action of the Coulomb attraction of the nucleus,
whose potential energy forms a potential well, and the energy of the
electron is quantized and forms a discrete spectrum of energy levels.
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6.6.4.2. Time-dependent Schrödinger equation
So far we have considered only possible quantum states of

particles with constant energy ℇ, which derive from the solution of the
time-independent Schrödinger equation and set its state at a given time.
In dynamics, the state, including the energy of a particle ℇ, changes with
time. In the general case, see (6.124)𝜓(𝑟, 𝑡) = 𝐴𝑒 𝑒

Since 𝜓(𝑥, 𝑡)~𝑒 𝑒
then ͻψͻt = −𝑗𝜔𝜓

Let us multiply the last equation by ℏ, thenℏ 𝜕𝜓𝜕𝑡 = −𝑗𝜔ℏ𝜓
or ℇ𝜓 = 𝑗ℏ 𝜕𝜓𝜕𝑡

Substitution in (6.133) gives𝑗ℏ 𝜕𝜓𝜕𝑡 = − ℏ2𝑚 Δ𝜔 + 𝑈𝜓 (6.176)

Equation (6.176) is called the time-dependent Schrödinger
equation. To describe the behavior of microparticles, the time-
dependent Schrödinger equation plays the same role as the equation of
motion in the mechanics of macro-processes.

Equation (6.176) is often written as𝑗ℏ 𝜕𝜓(𝑟, 𝑡)𝜕𝑡 = −𝐻𝜓 (6.177)

where 𝐻 is the Hamiltonian operator.
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𝐻 = − ℏ2𝑚  Δ + 𝑈 (6.178)𝐻 is an analogue of the Hamiltonian introduced in classical mechanics
for the non-Newtonian notation of the equation of motion (see Section
2.7.7).

6.6.5. Acoustic waves

Acoustics is the field of physics that studies elastic vibrations and
waves in the frequency range from zero to 1011 to 1013 Hz. Acoustic
waves also include sound, which covers the spectrum of elastic waves
between 20 and 20,000 Hz.

Acoustics originated in ancient times as the study of sound. The
physical properties of sound were studied by Pythagoras (6th century BC)
and Aristotle (4th century BC). In the Middle Ages, sound waves were
explored by Leonardo da Vinci (15th-16th centuries) and Galileo (17th
century).

The general theory of radiation and propagation of sound waves
in a medium appeared at the end of the 17th century. Huygens, Hooke,
Galileo, the French scientist Marin Mersenne, and many others played a
major role in its creation.

Acoustic waves and, in particular, sound refer to elastic waves
propagating in solid, liquid and gaseous media.

When a solid elastic medium is deformed, mechanical waves arise
in it, which transfer the deformation from one point to another. In this
case there is also a transfer of elastic strain energy.

In liquids and gases, which have volume elasticity but no shape
elasticity (see sections 2.9.2, 2.9.3), only longitudinal waves of tension
and compression can propagate. An example would be sound waves.

Transverse shear waves also propagate in solids. At the
boundaries of media, surface waves, which are a combination of
longitudinal and transverse waves, can also occur.
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6.6.5.1. Acoustic wave equations
In the general case acoustic waves propagate in a solid material

medium, which is characterized by three fields - two scalar, pressure and
density, 𝑝 =  𝑝( х, 𝑦, 𝑧, 𝑡), 𝜌 =  𝜌( х, 𝑦, 𝑧, 𝑡)
and one vector field of velocities𝑣  =  𝑣( х, 𝑦, 𝑧, 𝑡).

The connection between these fields is considered in the section
"Continuum mechanics" and in the equations of aerohydrodynamics (see
Section 2.9.6).

In the following, using these equations, we will neglect the terms
that take into account the effects of the gravitational field and the
viscosity of the medium. In this simplified form, these equations can be
written as follows

* 1) equations of motion𝜕𝜐𝜕𝑡 + (𝜐,⃗ 𝛻)𝜐 = − 𝛻𝑝𝜌 (6.179)

(see Equation 2.233).
2) the equation of continuity𝜕𝜌𝜕𝑡 + 𝑑𝑖𝑣(𝜌𝜐) = 0 (6.180)

Let us denote the values of pressure and density of the
unperturbed medium that existed before the arrival of the wave by𝑝 и 𝜌 , and the changed values of pressure and density by 𝑝 и 𝜌, such
that р =  р −  р  и  𝜌′ =  𝜌 −  𝜌 .

We consider wave processes resulting from small perturbations
of the medium, at which 𝜌 ≪ 𝜌 ;  𝜌 ≪ 𝜌
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In this case, the perturbations do not violate the homogeneity
and isotropy of the medium, and the hydrodynamic equations above are
simplified and take the form𝜕𝜐𝜕𝑡 + 1𝜌 𝛻𝑝 = 0𝜕𝜌′𝜕𝑡 + 𝜌 𝑑𝑖𝑣𝜐 = 0⎭⎬

⎫
(6.181)

The joint solution of the latter equations gives𝛻𝑝 − 1𝑐 𝜕 𝑝𝜕𝑡 = 0𝛻𝜌 − 1𝑐 𝜕 𝜌𝜕𝑡 = 0𝛻𝜐 − 1𝑐 𝜕 𝜐𝜕𝑡 = 0 ⎭⎪⎪⎬
⎪⎪⎫

(6.182)

(6.182) are wave equations that describe wave propagation in a
medium with velocity c (not to be confused with the speed of light in a
vacuum c, which is a world constant).

Thus, we conclude that small perturbations of pressure, density
and velocity created in some region of a continuous material medium
propagate in it in the form of acoustic waves.

In addition, it can be shown (we accept without proof) that𝑝 = 𝑐 𝜌′ (6.183)

In the general case, the wave equation (for any of the wave
characteristic quantities) can be written asΔ𝜓 − 1𝑐 𝜕 𝜓𝜕𝑡 = 0 (6.184)

The solution of this equation in the one-dimensional version is
the wave function 𝜓(𝑥, 𝑡) = 𝜓(𝑥 − 𝑐𝑡)
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Substituting this solution into the initial hydrodynamic equations
for small perturbations gives 𝜐 = 𝑝′𝑍
where Z is the value of the so-called acoustic impedance𝑍 = 𝜌 𝑐

The wave function is harmonic and in the general case has the
form

1) for the one-dimensional case𝜓(𝑥, 𝑡) = 𝑅𝑒 𝐴𝑒 ( ) (6.185)

2) for the three-dimensional case𝜓(𝑟, 𝑡) = 𝑅𝑒 𝐴𝑒 ⌈( )⌉�⃗� = 2𝜋𝜆 �⃗� (6.186)

where
λ is the wavelength;
ω is the cyclic frequency;�⃗� is the unit vector of the wave propagation direction. *

6.6.5.2. Characteristics of acoustic waves
The speed of light in a vacuum, as we have seen, is a constant.

The speed of propagation of acoustic, including sound waves, is
determined by the characteristics of the medium, its elastic properties.
Here are semi-empirical formulas for calculating the speed of acoustic
waves and, in particular, sound, in different media, without proof. The
speed of acoustic wave propagation:

- in gaseous media
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𝑐 = 𝛾𝑝𝜌 (6.187)

where γ is the relative displacement.
- in liquids

𝑐 = 𝑛𝐴𝜌 (6.188)

where A and n are constants for different liquids;
- in solids

𝑐 = 𝐸𝜌 (6.189)

where E is the modulus of elasticity of longitudinal compression.
Speed of sound propagation:
- in liquids and gases

𝑐 = 𝐾𝜌 (6.190)

where K is the bulk modulus of elasticity.
In ideal gas

𝑐 = 𝜂𝑅𝑇𝜇 (6.191)

where
R is the universal gas constant;𝜂 is the adiabatic index;
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𝜇 is the molar mass.
In the fields of acoustic waves, the elements of the medium are in

motion and therefore have kinetic energy. In doing so, they undergo
tensile and compressive strains. The energy density of the acoustic wave
w is equal to the sum of the kinetic energy density in the initial state𝑤 = 𝜌 𝜐2
and changes in the density of excess internal energy w'.

In other words, 𝑤 =  𝑤  +  𝑤′.
* The density of excess internal energy is equal to the density of

the work of the forces of excess pressure with a minus sign𝑑𝑤 = − 𝑑𝐴𝑉 = − 𝑝 𝑑𝑉𝑉 = 𝑐 𝜌 𝑑𝑉𝑑𝑚𝑉𝑑𝑚 = 𝑐 𝜌𝜌 𝑑𝜌 (6.192)

where
dA is an element of work;
V is the volume.

By integrating (6.192), we obtain that𝑤 = 𝑐 𝜌′2𝜌
Total energy density in an acoustic wave𝑤 = 𝜌 𝜐2 + 𝑐 𝜌′2𝜌 (6.193)

For acoustic waves, as well as for electromagnetic waves, the
concept of Poynting vector П⃗ is introduced by the formula𝑑П⃗ = 𝐽 , 𝑑𝑆 (6.194)

where 𝐽  is the vector of energy flux density
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𝐽 = 𝑑ℇ𝑑𝑆𝑑𝑡 𝑒 ; (6.195)𝑒  is the unit vector of the direction of energy flow.
From (6.191) and (6.195) it follows that𝑑П⃗ = 𝑑ℇ𝑑𝑆𝑑𝑡 𝑒 𝑑𝑆 ∙ �⃗� (6.196)

from which 𝑑П = − 𝑑ℇ𝑑𝑡 (6.197)

On the other hand, substitution (6.195) gives

ℇ = 𝑤𝑑𝑉 = 𝜌2 𝜐 𝑑𝑉 + 𝜐2𝜌 𝜌′ 𝑑𝑉𝑑ℇ𝑑𝑡 = 𝜌2 2 𝜐, 𝑑𝜐𝑑𝑡 𝑑𝑉 + 𝜐2𝜌 2𝜌′ 𝑑𝑝′𝑑𝑡 𝑑𝑉
It follows from the equations of hydrodynamics that since𝑑𝜐𝑑𝑡 = −𝛻𝑝, 𝑎𝑛𝑑  𝑑𝑝𝑑𝑡 𝛻𝜐,
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𝑑ℇ𝑑𝑡 = − (𝜐, 𝛻𝑝 ) 𝑑𝑉
− 𝜐 𝜌 (𝛻, 𝜐)𝑑𝑉
= − [(𝛻𝜐, 𝛻𝑝′) + 𝑝′𝛻𝜐]𝑑𝑉
= − (𝛻, 𝜐)𝑑𝑉 = − (𝑝 , 𝜐, 𝑑𝑆)

(see Field Theory, Appendix 3).

П = 𝐽 , 𝑑𝑆 = 𝑝′�⃗�, 𝑑𝑆
or

(−𝑝 𝜐 + 𝐽 , 𝑑𝑆) = 0,
from which 𝐽 = 𝑝′𝜐. (6.198)

The acoustic impedance of the medium Z, introduced above, is
calculated by the formula𝑍 = 𝑝′𝜐 (6.199)

Substituting this expression into formula (6.198) gives the
energy flux density
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𝐽 = 𝑝′𝑍 (6.200)

For periodic waves, the energy flux density Jw averaged over a
period is 𝐽 = 1𝑍 1𝑇 𝑝′ 𝑑𝑡

Since the value of pressure P' satisfies the wave equation, then𝑝 = 𝑝′ sin 2𝜋𝑇 𝑡
Substitution yields𝐽 = 12𝑍 𝑝′ (6.201)𝐽  is called the intensity of the acoustic wave. *
Acoustic waves obey the well-known laws of reflection and

refraction.
Let monochromatic acoustic wave 1 (Fig. 6.30) fall

perpendicularly to the interface between two media with coordinate x =
0. Let's denote the acoustic impedances of the media by Z1 and Z2

Figure 6.30.
This produces reflected 2 and refracted 3 waves.
Let it further 𝑝′ = 𝐴 𝑒 ( )

then
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𝜐 = 𝐴𝑍 𝑒 ( ) (6.202)

Accordingly𝑝′ = 𝐴 𝑒 ( );  𝜐 = 𝐴𝑍 𝑒 ( )
𝑝′ = 𝐴 𝑒 ( );  𝜐 = 𝐴𝑍 𝑒 ( )

Let the forces act on the interface from the wave side, the modules
of which we denote by f12 and f21. According to the third law of motion

f12 = f21.
Let us define an element dS. In medium 1 the pressure is created

by waves 1 and 2, and in medium 2 - only by wave 3, so𝑓 = 𝑝 + 𝑝 𝑆  in medium 1𝑓 = 𝑝 𝑆                  in medium 2

it follows that
р'1 + p'2 = р'3.

Accordingly
А1 + А2 = А3.

It also follows from the continuity condition that𝜐 + 𝜐 = 𝜐
Let us denote 𝑍1 / 𝑍2 =  𝛼, then after substitution we obtain𝐴 = 𝛼 − 1𝛼 + 1 𝐴 (6.203)

𝐴 = 2𝛼𝛼 + 1 𝐴 (6.204)
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The energy coefficients of reflection R and refraction S can be
written in the form𝑅 = 𝐽𝐽 ; 𝑆 = 𝐽𝐽 (6.205)

In the case when 𝛼 = 1, т. е.  𝑍 = 𝑍  we obtain that𝑅 =  0   and   𝑆 =  1.
If 𝛼 → 0 или 𝛼 → ∞  then the resistances of the media are very

different. In the first and second cases in this𝑅 → 1 and 𝑆 → 0
Thus, at equal acoustic impedances, no reflected wave occurs, and

all the energy of the incident wave is converted into the energy of the
refracted wave.

On the contrary, when the acoustic impedance of the second
medium is much greater than the first, the wave is completely reflected.

Then at 𝛼 > 1 𝑅 > 0 и 𝑆 = 0 i.e. the reflection is in-phase, and at𝛼 < 1 𝑟 > 0, но 𝑆 < 0 i.e., the reflection is antiphase.

6.6.5.3. Elements of physiological acoustics
Subjectively, the frequency of the sound wave is perceived by the

auditory organs as the pitch of the sound. Each harmonic of a sound wave
is called its tone. The higher the pitch, the higher the frequency of the
wave. The tone corresponding to the lowest frequency of the spectrum of
a complex sound is called the fundamental tone. The tones
corresponding to the other frequencies of the spectrum are called
overtones. Overtones whose frequency is a multiple of the fundamental
frequency are called harmonics, with the fundamental tone with
frequency v0 called the first harmonic, the overtone with frequency 2v0
called the second harmonic, etc. Sound waves whose frequencies are
between 16 and 20,000 Hz are perceived by the human ear and are called
audible. Musical or so-called tonal sounds occupy a special place among
audible sounds. Musical sounds form a discrete, linear spectrum of
frequencies vt at a certain point in the spectrum of audible sounds.



158

Musical sounds correspond to periodic or almost periodic vibrations. The
entire spectrum of musical sounds is called a scale, which is divided into
octaves, intervals in which the ratio of frequencies is 1 to 2. The octave
is conventionally divided into seven parts, the frequency of each part
defines the corresponding note from "C" to "B".

The number and intensity of the overtones that make up a complex
musical sound determines its timbre. Sounds that form a continuous
spectrum are called noise.

The measure of the strength of the auditory sense is the loudness
of the sound, which depends on its effective pressure pef and frequency.
The minimum effective pressure of a sound at which it is still perceptible
to the hearing organs is called the hearing threshold. The human hearing
threshold is considered to be 2 -10-5 N / m2 at a frequency of 1000 Hz.

The sound pressure level of a sinusoidal sound wave is the𝐿 = 2𝑘𝑙𝑔 𝑝эф𝑝
where k is the proportionality coefficient.

The sound pressure level is measured in decibels, and the volume
level is measured in phones. 1 phon is a loudness value equal to a sound
pressure level of 1 dB.

Sound waves with frequencies v < 16 Hz are called infrasound
and those with frequencies 𝑣 >  2 ∙  10  Hz are called ultrasound. In
general, ultrasound usually refers to sound waves in the range of 2 ∙10  − 10  Гц.

Sounds between 20 Hz and 200 kHz are called low-frequency
ultrasound. The emitter of the low-frequency spectrum of ultrasound is,
for example, a siren. Magnetostrictive ultrasonic emitters up to 200 kHz
operate on the principle of oscillations in ferromagnetics. These
vibrations occur when ferromagnetics are magnetized in a periodically
changing magnetic field (ultrasonic magnetostrictive vibrators).
Piezoelectric ultrasonic emitters are used to generate ultrasound with
frequencies up to 50 MHz. The principle of operation is similar to that of
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magnetostrictive vibrators and results from the oscillation of a
piezoelectric plate in an alternating electric field.

As in the case of light at high frequencies, narrow directional
beams of ultrasound (ultrasonic beams) can be obtained. The
directionality of the beams is the higher the closer they are to coherent
waves. Ultrasonic beams behave similarly to light waves. They are
subject to reflection, refraction, focusing, etc. The laws of ray optics are
therefore applicable to them.

Mirrors and lenses of various shapes are used to change the
direction and focus the ultrasonic beams. When making lenses and
mirrors, the acoustic resistances of the materials from which they are
made and of the medium are primarily taken into account.

Amplitudes of velocity, acceleration of medium particles, as well
as sound pressure amplitudes in ultrasonic waves are many times greater
than in ordinary sounds. In this regard, ultrasound has a crushing
(destructive) effect, and in liquids causes cavitation (formation and
disappearance of internal discontinuities of solid structure, having the
form of tiny bubbles).

Ultrasound is intensely absorbed by liquids and gases. In
engineering, ultrasound is used for sonar (similar to radar). Ultrasonic is
also used to detect internal product defects (non-destructive testing) in
the form of cracks, cavities, etc. Non-destructive testing is based on the
scattering of ultrasonic waves from the surfaces of defective places.

Ultrasound is also used to form emulsions, suspensions, removal
of oxide films, degreasing surfaces, drilling, grinding, polishing products
made of metals and plastics.

Ultrasound is also widely used in medicine, chemistry, biology
and other industries. Ultrasound, in particular, serves as a means of
communication and biolocation of dolphins and bats.

6.6.5.4. Surface acoustic waves (SAW)
Elastic waves propagating along the free surface of a solid or

along the boundary of a solid with other media (vacuum, gas, liquid,
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solids) are called surface acoustic waves, SAW. A distinction is made
between SAWs with vertical and horizontal polarization. For SAWs
with vertical polarization, oscillations of medium particles occur in the
plane perpendicular to the boundary. For SAWs with horizontal
polarization, oscillations of the medium particles occur in a plane parallel
to the boundary. The simplest SAWs with vertical polarization are
Rayleigh waves propagating along the boundary of a solid body with
vacuum or a rarefied gas medium (Fig. 6.31).

Waves with vertical polarization propagating along the boundary
of two solid media are called Stoneley waves, which consist essentially
of two Rayleigh waves.

Figure 6.31.
Waves with horizontal polarization are called Love waves. Love

waves propagate at the boundary of a solid half-space with a solid layer.
These waves are transverse waves. At the boundaries of crystals, due to
their anisotropy, the movement of particles becomes significantly more
complicated. A crystalline medium is also often piezoelectric with  a
piezoelectric effect (see section 6.6.4.3). The piezoelectric effect can be
direct or converse. The direct effect is called the piezoelectric effect,
when electric charges appear on the crystal surface under the action of
deformation. The piezoelectric effect is called the converse effect, when
a change in the direction of the electric field applied to the crystal causes
it to deform. Due to the piezoelectric effect, it is possible for SAW to
interact with electromagnetic fields, including the fields of conduction
electrons. On crystal planes, SAW can exist on a free surface, in the
absence of a solid layer. The second medium in this case is air or vacuum.
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In the general case, SAWs arise under the action of the strain
forces of full compression or tension, which, as we know (see Section
2.9.6), are expressed through the divergence of the symmetric shear stress
tensor Tij, where i,j = x,y,z. If we denote the vector of generalized
deflection by 𝑢, then the equation of motion of particles on the surface of
a solid body (the wave equation of the process) can be written in the form𝜌 = 𝑑 𝑢𝑑𝑡 = 𝑑𝑖𝑣𝜏

In component form, this equation is written by the following
system 𝜌 = 𝑑 𝑢𝑑𝑡 = 𝜕𝜏𝜕𝑥

The piezoelectric effect is accounted for by augmenting the above
system of equations with a system for the electric field, that is, the
equation for the vector of electric induction 𝐷 and the potential φ𝐷  =  −𝑔𝑟𝑎𝑑𝜑.

It can be shown (we will accept this without proof) that the system
of equations describing the wave process in this case admits a solution in
the form of a plane wave with wave number k = ω/υ, propagation velocity
υ, directional cosines bi, displacement ui and potential φ, namely𝑢 = 𝛼 𝑒𝜑 = 𝛼𝑒

It is important to note that neither the electric field potential nor
the field itself is electromagnetic in nature in this case, because it is
caused by a mechanical wave propagating at a speed υ, which is about 10-

5 times less than the speed of propagation of electromagnetic waves.
This property of SAWs allows them to be used in long-duration

delay lines and microwave technology. Since the low propagation
velocity of SAW also reduces the wavelength compared to an
electromagnetic wave of the same frequency, SAW devices have much



162

less size and weight compared to electromagnetic devices of the same
purpose.

In addition, SAW devices are located on the surface of the crystal,
which makes them more robust and reliable. All this has led to a wide
range of applications of SAW devices, including, in addition to delay
lines, as bandpass filters, control elements of microwave generators,
frequency synthesizers, correlators, intermediate frequency filters,
optical and acoustic image scanners, as well as signal processing devices,
etc.

The propagation of SAW on the surface of the sound tube allows
to easily carry out the supply and withdrawal, transmission and
processing of signals, as well as - to manufacture electroacoustic
transducers of SAW by methods of planar technology.

Because of these properties, SAW devices are comparable and
well matched to microchips.

6.6.6. Waves on the liquid surface

On the free surface of the liquid, special waves are formed, which
are sometimes, not quite correctly, called surface waves. The fact is that
other waves, such as the acoustic waves we discussed in the previous
paragraph, can also arise on the surface of bodies. The most well known
are surface waves, which are formed on the free surface of reservoirs,
oceans, seas, lakes, rivers, etc. Deviation of particles of free surface of
liquid from the equilibrium occurs under the action of disturbing factors
(wind, movement of bodies on the surface of the liquid, etc.). The
resulting liquid deformation is restored by two forces acting
simultaneously on the liquid surface, gravity and surface tension.

In a particular case, only one of these forces may apply. At a
sufficiently deep depth, waves arise mainly under the influence of
gravity. These waves are in the long-wave part of the spectrum. At
relatively shallow depths, waves arise under the predominant influence
of surface tension forces. These are short waves, which most often have
the appearance of ripples, and are called drip waves.
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The liquid in the surface waves remains stationary on average, but
the waves themselves are moving. Unlike all other known waves, surface
waves are neither transverse nor longitudinal, but a mixture of both. This
is a consequence of the fact that liquid is by nature incompressible. As a
result, ridges and troughs on its surface are not formed by the upward and
downward movement of its particles, but by the inevitable flow of the
fluid and the movement of its particles along the surface to the sides.
Since the forces of surface tension and gravity resist this movement, a
wave occurs. As a result of the fluid flowing out of this place, it forms a
trough, which alternates with the ridge that occurs here when it flows in.
The surface particles of the liquid, thus, under the action of the above
forces, make a complex circular motion (Fig. 6.32).

Figure 6.32.
You can easily see this by looking at objects that are close to the

incoming wave.
The surface wave propagation velocity can be determined by the

method of the theory of dimensions with subsequent refinement of the
values of constant coefficients by experiment (see Problem 11).

Phase velocities for waves of different nature, arising respectively
under the action of predominantly gravity (m), surface tension (n), or
under the combined action of both factors, are as follows

𝜐 = 𝑔𝜆2𝜋 ;  𝜐 = 2𝜋𝜎𝜌𝜆 ;  𝜐 = 𝑘𝜎𝜌 + 𝑔𝑘
where
g is the acceleration of gravity;
λ is the length of the arising wave;
σ is the surface tension of the liquid;
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ρ is the density of the liquid;
k is the wave number of the wave.

The group velocities are 3/2 and 1/2 of the phase velocity,
respectively.

The study of short-wave waves (ripples) showed that the surface
waves do not have a sharp wave front. This is explained by the fact that
due to the dispersion, which follows from the above formulas, the speed
of the main waves, which consist of fine ripples and are therefore short-
wave, is greater than the speed of the other waves. Therefore, these waves
are surging forward, and consequently, a sharp disturbance of the water
surface does not result in a delineated wave. When an object, such as a
boat, moves through the water at a certain speed, since different waves
move at different phase velocities due to dispersion, a rather complex
picture emerges on the surface of the water.

The above formulas show that at depth, where the wave length is
greater, the wave accelerates, and near the shore, where the depth is less,
its speed decreases, and the wave slows down sharply. The same wave
braking occurs on all shoals. As a result, when the wave hits the shore
and shoals, a shock wave occurs, which has a very complex shape and is
accompanied by a strong foaming of the water.

If the observer is moving relative to the water, then, from his point
of view, the water, on the contrary, is moving relative to him, and the
waves, which in the end are always stationary relative to him, move as if
together with him. Since, however, the group velocity of long waves is
greater than the phase velocity, and of short waves is smaller, ripples are
always formed in front of the floating object, and long waves are formed
behind it.

6.6.7. Ray optics

As mentioned above, visible light, which plays an enormous role
in human and animal life, occupies a minuscule area on the
electromagnetic radiation scale. The width of the spectrum of this region
is in the range of 0.45 - 0.75 μm. For comparison, recall that the entire
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spectrum of electromagnetic radiation occupies a region 10-15-105m wide.
(see Fig. 6.23). In spite of this, it is visible light waves that carry all visual
information, which for humans is at least 90% of the information about
the surrounding reality received throughout his life. Visual sensations are
converted by the brain into a set of images of real things. They are
perceived by means of the organs of vision, part of which are the eyes. It
is amazing how highly sensitive the eyes are to light. Exposure to as little
as 10-17 watts of light energy is sufficient to produce a light sensation.
The sensitivity of the eye to light of different wavelengths is different, so
the subjective assessment of the light power of different colors in the
visual sense and the power value are not the same. The eye, in particular,
has the greatest sensitivity to yellow-green (0.54 to 0.58 μm). The
sensitivity of the eye to red and violet is much lower, and in the infrared
and ultraviolet, as well as beyond them, it becomes zero. For this reason,
the energy characteristics of light are mainly used to assess light effects.
These characteristics are set using a number of physical quantities -
including luminous flux, light intensity, illuminance and brightness.
Light flux is the amount of light energy flowing through a given area,
per unit time. Light intensity is defined as the amount of light flux
enclosed in one steradian of the solid angle. The SI unit of light intensity
is  1 candela (1 cd), which is equal to the unit of luminous flux in 1
steradian of solid angle and is determined with the help of a special light
standard.

Luminous flux, expressed in light intensity, is measured in
lumens (lm). 1 lm is the luminous flux emitted by a 1 cd light source at
a solid angle of 1 steradian. Illuminance is the amount of luminous flux
per unit area of the illuminated surface. The unit of illuminance, called
lux (lx), is the illuminance of such a surface, per unit area of which a
luminous flux of 1 lm falls.

Let us denote:ℇ is the magnitude of the light energy incident on the site o at an
angle α;

 is the value of the solid angle, which is defined as the value of
the surface cut by the cone of the light flux coming from the light source
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on the surface of the sphere S of radius g, divided by the square of this
radius;

I is the power of light;
F is the luminous flux;
E is the illuminance;
Then, according to these definitions, we can write𝐹 = 𝑑ℇ𝑑𝑡 ;   𝐼 = 𝑑𝐸𝑑 ;   𝐸 = 𝑑𝐹𝑑𝜎

where

 = 𝑆𝑟 , а   𝑑𝜎 = 𝑑𝑆cos 𝛼
Calculations show that at noon, when the Sun is in the zenith and

its rays fall on the Earth at relatively small angles, the illumination of
the Earth's surface in the middle latitudes is about 105 lux.

The above relations make sense only for so-called point light
sources, i.e. such sources whose dimensions can be neglected compared
to the distance from them to the observer. Radiation from point sources
is considered isotropic (uniform in all directions).

In addition, it is assumed that light is emitted as radial beams of
rays emanating from a point source, as from the center of the sphere of
the light wave front. In the case of sources of finite size, they are divided
into small areas, each of which can be regarded as a point source.
Extended sources are also characterized by luminance, which is defined
as the intensity of light emanating from a unit of apparent magnitude of
the source surface. Mathematically, the brightness of the source L is
calculated by the formula 𝐿 = 𝑑𝐹𝑑𝑑𝑆 cos 𝜃,
where S1 is the area of the radiating area;
θ is the angle between the normal to the surface of this area and the
radiation direction.
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The unit of brightness of a luminous area is the brightness of a
unit of its area in the perpendicular direction at a luminous intensity of 1
cd. In the SI system, the unit of brightness is called a nit (nt). Optics in
which it is assumed that light is a set of light rays coming from a point
source or from a set of point sources is called ray optics or geometric
optics.

As follows from the definition, a point light source radiates
equally in all directions, as a result of which the energy of the light flux
is distributed uniformly over a spherical surface whose radius is equal to
the distance from the observer (observation point) to the source. The
effect of light is determined mainly by the illuminance of the area, which
is inversely proportional to the square of the distance of the area to the
source and directly proportional to the cosine of the angle between the
direction of the incident beam and the positive normal of the area. This
explains the difference in sunlight and the thermal effects of light in
different climates, at different times of the year and day.

Very often it is necessary to eliminate the scattering of light
energy in all directions and concentrate it in a given direction. Such
concentration is achieved both by using quantum generators (lasers) and
by using mirrors with a complex surface, such as parabolic mirrors, etc.
In addition to these devices, for the concentration of light fluxes, devices
reflecting, scattering or refracting light are also used.

In the general case, when light falls on the boundary of two media,
part of the light flux is reflected, part is refracted and transmitted to the
next medium, and part is absorbed. A body that reflects light more
strongly than surrounding bodies is perceived as a light spot on a dark
background and vice versa. Bodies that do not absorb but transmit light
by refracting it are transparent. If, for example, a glass plane-parallel plate
with very little absorption is placed in the path of a light beam, then the
light, having passed through the plate and refracted twice, retains almost
entirely its direction and intensity, so that all objects beyond it are clearly
visible and undistorted. As the thickness of the plate increases, the light
it absorbs increases, and it gradually loses its transparency. To change the
direction of the light rays, they must be directed at the curved surface.
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Let a luminous object be given. Choose an arbitrary luminous
point S on it . From S, as from a point source of light, rays propagate in
all directions. Choose two some rays originating from point S. Let's make
them intersect at some point Si and diverge again (see Fig. 6.33).

Figure 6.33.
The eye or any other light receptor outside of point S1 will

determine that the rays diverge from point S1 as from a point source. If
you put a screen or a photographic plate at this point, they will fix a
luminous point. This allows us to consider point S1 to be a real image of
point S. We have considered two rays coming from one luminous point
and intersecting at another. If we were to consider not two but three, four,
and so on rays intersecting at the same point, the essence of the matter
would not change. Therefore, here and hereinafter we will limit ourselves
to considering only two of all possible rays. On the other hand, let us
emphasize that the luminous point differs from its image because it is a
real source of light and the rays from it diverge in all directions, while
from the image point the rays diverge only in a limited solid angle. The
above applies to all points of a luminous body, so the set of their images
forms an image of the body. This image differs in that it reproduces only
the distribution of amplitudes of the corresponding waves and does not
reproduce the distribution of their phases. This is due to the fact that all
image points, regardless of the time of their occurrence, lie in the same
plane and therefore give a flat image of the volumetric object on the
screen.

To get an image of a luminous point, you have to change the
direction of the rays coming from it by making them intersect. This can
be done in two ways - by refraction or reflection. Consider first the
method of changing the direction of the rays by refracting them. For this
purpose, a transparent plate with a curved surface of the interface between

S
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the two media is used. This plate can be made of glass, quartz, transparent
polymer, etc. In this case, at least one surface of the plate out of the two
must not be flat. Such a plate is called a lens. The easiest way to make a
lens surface is to make it spherical, although sometimes it is made
cylindrical, parabolic, etc. Lenses with two different surfaces are often
used, including biconvex, biconvex, convex-concave, convex-flat, and
concave-flat (see Figure 6.34).

Figure 6.34.
Any real lens has a certain thickness, but this thickness is made as

small as possible with respect to the radius of curvature of its surface, so
that it can be neglected. Such a lens is usually called a thin lens. Let's
take a thin spherical biconvex lens of O1O2 thickness as an example (Fig.
6.35). C1 and C2 are the centers of the spherical  surfaces of the lens.  If
O1O2 << O1C1 and O2C2, then the points O1 and O2 can be considered to
coincide with the point O, which is called the optical center of the lens.

Figure 6.35.
Parts of spherical surfaces near the optical center are

approximately parallel, so when a ray passes through the optical center,
it practically does not change its direction, but only shifts parallel to itself.
Since the shift is relatively small, we can assume that any beam passing
through the optical center is not refracted. The straight lines passing
through the optical center of the lens are called optical axes. The optical
axis passing through the centers of the spherical surfaces of the lens is
called the main axis, the other axes are called secondary axes. Based on
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the law of refraction and geometrical considerations, it can be shown that
all rays of a beam parallel to the main optical axis of a thin lens will
intersect at the same point F on the main optical axis after being refracted
twice. This point is called the focus of the lens, and the distance OF = f
is called the focal length. On the contrary, the rays originating from a
point light source placed in focus will refract out of the lens as a parallel
beam. The focus of a lens always lies on the same side as the center of its
refractive surface. In the case of a lens with a convex surface, the focal
point, where the rays falling on the lens surface and parallel to its main
optical axis gather, lies on the back side of the lens. Such a lens is called
a converging lens. The focus of a lens with a concave surface is on the
same side as the rays, so they are not converging but diverging when
refracted in the lens (see Figure 6.36).

Figure 6.36.
Such a lens is called a diverging lens and its focus is imaginary.

The image in the diverging lens appears at the intersection point not of
the refracted rays themselves, but of their imaginary extensions. This is
why it is called imaginary rather than real. The real or imaginary image
of any luminous point of an object, and consequently of the object as a
whole, is easily constructed by considering the known course of two rays
emanating from that point and finding the point of their intersection, after
refraction or the point of intersection of their imaginary extensions (see
Figs. 6.35 and 6.36).

As the first ray, we choose a ray passing along the corresponding
secondary axis and not changing its direction in this connection, and the
second - a ray parallel to the main optical axis, passing after refraction
through the focus of the lens. The focal distance can be determined
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experimentally by the luminous point arising on the main optical axis
from a beam of rays parallel to that axis directed at the lens. For a thin
lens and narrow beams of light incident on the lens, the value of the focal
length is determined by the properties of the lens, namely the index of
refraction of the substance n of which it is made, and the radii of curvature
of its surfaces r1 and r2. The calculations give the following relationship
for the focal length 𝑓 = 1𝑛 − 1 1𝑟 + 1𝑟

The inverse of the focal length is called the optical power. Optical
power is measured in dioptres. 1 dioptre is the optical power of a lens
whose focal length is 1m. The focal length and optical power of the
converging lenses is positive, that of the diverging lenses is negative.

To construct an image of a luminous point lying on the main
optical axis, it is necessary to first construct an image of any point lying
on a perpendicular to the main optical axis, reconstructed from this point.
The resulting image is projected on the main optical axis.

From Fig. 6.35 we can also obtain the so-called lens formula,
which relates the focal length and the distances from the object and its
image to the lens, provided that the rays under consideration form a small
angle with the principal optical axis, as well as the lens magnification
formula. 1𝑓 = 1𝑎 + 1𝑎𝐷 = 𝑎𝑎
where
a is the distance from the object to the lens;
a1 is the distance from the image to the lens;
D is the magnification.

From the above lens formula, we see that at
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𝑎 → ∞,  𝑎 = 𝑓; 𝑎 = 𝑓,𝑎 → ∞; 𝑎 = 2𝑓,  𝑎 = 2𝑓; 𝑎 > 2𝑓; 𝑎 > 2𝑓,  𝑎 > 𝑓; 𝑓 < 𝑎 < 2𝑓,  𝑎 > 2𝑓; 𝑎 < 𝑓, −∞ <  𝑎 < 0
A negative value of a1 means that the image is imaginary.
It has already been said above that real and imaginary images can

be obtained not only by refraction of rays with lenses, but also by
reflection with concave, flat and convex mirrors. For mirrors we can use
the lens formula, and for spherical mirrors of radius r the focal length of
the mirror is 𝑓 = 𝑟2

The focus of a concave mirror is real and the focus of a convex
mirror is imaginary. Depending on the location of the object, the image
in the spherical mirror can be real or imaginary. The image in a flat mirror
is always imaginary.

Lenses and mirrors are used in science and technology to make
optical devices such as microscopes, projection devices, cameras, glasses,
binoculars, telescopes, etc. The simplest of these devices is a magnifying
glass, which is used to magnify the image of the object in question.

The principle of the lens is also used by Nature in the organs of
vision, the eyes.

Optical systems are designed to look at objects that are very small
and far away from us. They are characterized by magnification or
sensitivity and resolving power.

Optical instruments are discussed in detail in the technical
disciplines of optics. Here we note only that the possibilities of optical
instruments are limited by the wave properties of light. So, for example,
when looking under a microscope at objects whose dimensions are
comparable to the length of the light wave, there is diffraction, that is, the
light rays envelope the object in question and actually distort its image.
Because of this, electron microscopes have recently been used to reduce
distortions. Since the electrons correspond to the de Broglies wavelength,
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which is much smaller than the wavelength of visible light, it is possible
to increase the magnification by many times.

As for telescopes, the stars viewed in them are located so far away
that even at high magnification they are visible at angles of view close to
zero as point objects. Telescopes allow us to see only low-bright stars, as
well as to extend their point images, which, when viewed with the naked
eye, merge and become indistinguishable from each other.

6.6.8. Holography

Wave interference is widely used in ray optics. Interference is
used, in particular, in holography, which is used to produce three-
dimensional images of objects called holograms.

Holography is a method of recording and reconstructing a wave
field based on recording the interference pattern that occurs when light
waves reflected by an object illuminated by a light source interfere with
a wave coherent with it coming directly from the source itself. The
reflected wave is called the subject wave, and the wave from the light
source is called the reference wave. The recorded interference pattern is
called a hologram. When the hologram is illuminated by the reference
beam a copy of the object wave reproduces the amplitude-phase spatial
distribution of the wave field which was created by it when recording and
an undistorted imaginary image of the object is formed in the same place
where the object was during holography.

A diagram explaining the process of producing holograms is
shown in Fig. 6.37
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Figure 6.37.
Let the coherent light from the source S fall on the object A. The

light  flux  reflected  from  the  object  is  a  certain  set  of  reflected  and
scattered by the object A rays 2-2, carrying information about the object,
which are called subject rays. Eye C, exposed to the indicated light flux,
will see an image of the object. If a BB screen is placed in the path of the
light flux, then coherent rays from all visible points of the object falling
on the screen, adding up, create in different points of the screen
oscillating processes different in amplitude and phase. Let's assume that
the screen is transparent and is able to record information about the
amplitude and phase of oscillations at each of its points. If we illuminate
such a screen with light from the same source using a mirror З, then the
light wave passing through the screen is modulated by a signal whose
amplitude and phase correspond to the amplitude and phase fixed in this
point by the subject rays. This process is called object image
reconstruction.

In other words, the light wave that passes through the screen will
contain complete information about the object even in its absence. The
observer's eye will see a three-dimensional imaginary image of the object
in the same place. This is because a hologram, unlike a photograph,
records not only the distribution of illumination, but also reproduces the
phase distribution of waves reflected from different elements of the
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illuminated object. The ratio of phases determines the three-dimensional
nature of the image.

By moving the eye along the hologram, you can see what an
object looks like from different sides of its observation. This is ensured
by the fact that the interference pattern of each hologram point contains
information about all elements of the object visible from this point.
Another feature of the hologram is that the observer sees an image of the
whole object even when the reference beam intended to reconstruct the
image is not passed through the whole hologram but through a part of it.
In this case the image of the object can be seen from the directions in
which the object was observed from the points of the illuminated section
of the hologram when this section was in its composition when it was
exposed by the subject and reference beams. Fig. 6.38 shows a real
scheme of obtaining a hologram.

Figure 6.38.
A beam of coherent radiation from a laser L with  the  help  of  a

semitransparent plate P is divided into two streams, one of which is
focused by lens l1 on the object A, and the second - by lens 12 is directed
to the photographic plate C. On the same plate the reflected and scattered
on the object flux of subject rays falls, which interferes with the first,
coherent to it half-flux. As a result, a hologram of the object is recorded
on the photographic plate. To reconstruct an image of the object a
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reference beam of light oriented relative to the hologram as it was
oriented when the hologram was acquired is directed onto the hologram.

Holography was discovered in 1947 by the English physicist
Dennis Gabor, but was developed in practice only after the creation in
1960 of sufficiently powerful lasers, emitters of coherent light. In Gabor's
scheme the source of the reference wave and the object were placed on
the axis of the hologram. In this case all three waves propagated behind
the hologram in the same direction, creating mutual interference and
distortion of the object image. In 1962-63, American physicists Emmett
Leith and Juris Upatnieks developed a scheme with an inclined reference
beam, eliminating the distortions noted.

The reconstruction of light waves recorded on a hologram creates
the complete illusion of the existence of an object indistinguishable from
the original, an image of which can be viewed from different angles just
as a real object is viewed. These properties of the hologram are used in
lecture demonstrations, in creating three-dimensional copies of works of
art, holographic portraits, to study moving particles, raindrops or fog and,
respectively, tracks of elementary particles in bubble chambers, creating
holographic movies and television. Holographic methods are also used in
interphotometry to detect changes in an object in the form of various
deformations or changes in its optical properties, etc. Holography is also
used to store and process information. The hologram can be produced not
only by optical method, but also calculated by computer. Such a virtual
digital hologram is used to produce three-dimensional images of non-
existent objects. In addition, holography is also used to image an object
acquired using acoustic waves. The principle of acoustic holography is
similar to that of optical holography. First the standing wave field
(hologram) formed by the interference of the subject and reference sound
waves is recorded, and then either the original image of the subject or the
structure of the sound field at some distance from the subject is
reconstructed from the recording. Different methods of visualization of
sound fields are used to make an acoustic hologram visible.

Recently, there have been attempts to create theories of the
holographic nature of the world. This is how, for example, we think the
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mechanism of vision can be explained. It is known that according to the
theory of ray optics, a real image of an object is formed on the retina,
which is then transmitted by nerve fibers to the visual center of the brain.
However, why we then see this image as three-dimensional and not inside
the brain, but outside the brain, in the very place where the object in
question is located, is not entirely clear. It seems as if we are looking at
the actual image of an object, recorded in the brain, with some kind of
internal vision. This phenomenon, however, can easily be explained in
terms of holography, given that a hologram appears on the retina, and we
therefore, as mentioned above, see an imaginary three-dimensional image
of the object in the very place where the object is located. However, in
this case it is necessary to assume that there is a mechanism in the visual
center of the brain which erases the hologram when all elements of an
object leave the field of view of the eye. This approach is consistent with
the general considerations made by Stanford University
neurophysiologist Karl H. Pribram. Pribram, in particular, suggested that
the brain's ability to transform perceptions of the senses into a coherent
image corresponds to the principles of holography. The brain, according
to Pribram, seems to probe the holographic information previously
recorded by the same flows of radiation coming from the senses. Even
more generalized is the "holographic principle" formulated by the Dutch
physicist from Utrecht University Gerard 't Hooft, according to which all
information contained in some area of space can be represented as a
certain hologram registered at the border of this area.

6.6.9. Typical problems on wave processes

Problem 1. The free end of a horizontally stretched elastic cord,
the other end of which is fixed stationary, is oscillated in the vertical plane
with a small amplitude B and period T. What process occurs in the cord?
Explain why. How does the displacement of point D of the cord, which
is on the right of its free end at a distance a, depend on time?

Solution. An elastic cord consists of molecules bound together by
intermolecular (elastic) interactions (bonds) (see figure). In the figure,
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molecules of mass mi are represented by circles, and the bonds between
them are represented by elastic springs of stiffness ki:

Let the free end A of the cord (a particle of mass m1) be oscillated
with small amplitude and period T along the y-axis so that𝑦 = 𝐵 cos 2𝜋𝑇 𝑡

The natural oscillations of a particle of mass m1 are rapidly
damped and can be neglected. The oscillations of particle m1 cause shear
deformation in the cord, which is transmitted by elastic bonds from one
particle to another with some speed u (the speed value is determined by
the degree of elasticity of the cord, so that the higher the elasticity, the
greater the speed). As a result, a transverse wave occurs in the cord
(particles oscillate in the direction perpendicular to wave propagation).
Perturbations from point A to point D will come with a time delay Δt𝛥𝑡 = 𝑎𝜐

Therefore, at point D after time Δt there will be the same
oscillations as at point A, but lagging behind them in phase so that𝑦 = 𝐵 cos 2𝜋𝑇 (𝑡 − 𝛥𝑡) = 𝐵 cos 2𝜋𝑇 𝑡 − 2𝜋𝜆 𝑎

Since 𝜆 = 𝜐𝑇
then 𝑦 = 𝐵 cos 2𝜋𝑇 𝑡 − 2𝜋𝑎𝜐𝑇 = 𝐵 cos 𝜔𝑡 − 2𝜋𝜆 𝑎

y

A

D

a

k1
k2

m1 m2
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where λ is the length of the elastic transverse wave propagating along the
cord. Since 2𝜋𝜆 = 𝑘
where k is the wave number, then𝑦 = 𝐵 cos(𝜔𝑡 − 𝑘𝑎)

The wave arising in the cord is a running wave and covers the
entire cord. The excited particle returns to its original state of equilibrium,
and its oscillations are resumed again and again.

After the wave arrives at point C, it will be reflected. As a result,
two coherent waves will arrive at an arbitrary point x of the cord, namely
the traveling wave yT and the reflected wave yR.𝑦 = 𝐵 cos(𝜔𝑡 − 𝑘𝑥)𝑦 = 𝐵 cos(𝜔𝑡 + 𝑘𝑥)

When these waves are added together, a standing wave is formed𝑦 = 𝑦 + 𝑦
namely у =  𝐵[cos(𝜔𝑡 −  𝑘𝑥)  +  cos(𝜔𝑡 +  𝑘𝑥)]
or 𝑦 =  2𝐵 cos 𝑘𝑥  ∙  cos 𝜔𝑡.

In this wave, each point makes harmonic oscillations, and the
amplitudes of the points of the cord (2𝐵 cos 𝑘𝑥) change depending on
their coordinate x according to the same harmonic law as the oscillations
of the points in time.

Problem 2. A sound wave at normal temperature falls on the
interface between air and water. How does the frequency and length of
the refracted wave change? Same for light (see figure)



180

Solution. The incident wave, hitting the points of the interface,
excites secondary waves of the same frequency in them, which then
propagate in the water unchanged. Thus, the frequency of the wave does
not change during the transition from air to water (refraction).

The speed of propagation of sound waves in air and water are
respectively 𝜐 = 1500𝑚𝑠 ;  𝜐 = 340 𝑚/𝑠

The wavelength is 𝜆 = 𝜐𝑇,
It is, in this way, 𝜆𝜆 = 1500𝑇340𝑇 ≅ 4,4
The length of the sound wave in water will increase 4.4 times.
For visible white light, the refractive index of water is 1.33, and

for air it is 1.00029. The refractive index of light in a medium (absolute
refractive index) is the value 𝑛 = 𝑐𝜐,
where
c is the speed of light in a vacuum;𝜐 is the speed of light in the medium.

Air

Water

water surface
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For water 𝑛 ≅  1,33, therefore𝑐𝜐 = 1,33
For air 𝑛 ≅  1,0029, and𝑐𝜐 = 1,00029.
Let us divide each of these expressions by the period T of the light

wave 𝑐𝜐 𝑇 = 1,33𝑇𝑐𝜐 𝑇 = 1,00029𝑇 ⎭⎬
⎫

from which 𝑐𝜆 = 1,33𝑇𝑐𝜆 = 1,00029𝑇 ⎭⎬
⎫

We divide the first equality by the second𝑐𝜆 ∙ 𝜆 𝑐 = T ∙ 1,331,00029𝑇
then 𝜆𝜆 = 1,33

Thus, during the transition from air to water, the sound
wavelength increases 4.4 times, and the light wavelength decreases 1.33
times.

Problem 3. Calculate the natural frequencies of the air column
oscillations in a 2.5 m long tube closed at both ends.

Solution. The natural oscillations of the air column are a set of
standing waves. Since the pipe is closed at both ends, there are wave
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nodes at these ends. The distance between two adjacent standing wave
nodes is λ/2, and there must be an integer number of half-waves on the
length l of tube, then 𝑙 = 𝑚 ∙ 𝜆2
from which 𝜆 = 𝑚 ∙ 2𝑙𝑚

On the other side, 𝜆 = 𝑐𝑇 = 𝑐𝑣
where T  and  v are, respectively, the period and frequency of natural
oscillations, whence𝑣 = 𝑐𝜆 = 𝑐𝑚2𝑙 , 𝑤ℎ𝑒𝑟𝑒 𝑚 = 1,2,3, …

The oscillation of the air column excites sound waves, and for
sound 𝑐 = 340 𝑚/𝑠
therefore 𝑣 = 3402 ∙ 2,5 𝑚
or 𝑣 = 68 ∙ 𝑚 𝐻𝑧, 𝑤ℎ𝑒𝑟𝑒 𝑚 = 1,2,3, …

Fundamental tone 𝑣 = 68 𝐻𝑧
1st overtone 𝑣 = 136 𝐻𝑧
2nd overtone 𝑣 = 204 𝐻𝑧

etc.
Problem 4. To transmit sound over long distances in radio

engineering, an informative low-frequency electromagnetic signal
(modulation) from an electroacoustic transducer, a microphone, is
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superimposed on the high-frequency carrier electromagnetic signal. How
many periods of electromagnetic oscillations emitted by an
electromagnetic wave transmitter of length l = 100 m are contained in one
period of modulating oscillations, when the sound frequency is 1200 Hz.

Solution. Electromagnetic wave length𝜆 = 𝜐𝑇 = 𝜐𝜐
where 𝜐 is the speed of propagation of electromagnetic waves in the air.
Assuming that the speed in air is equal to the speed of wave propagation
in a vacuum, let us assume that𝜐 =  с =  3 ∙ 108 𝑚/𝑐.

Thus, the frequency of electromagnetic waves is𝜐 = 3 ∙ 10100 = 3 ∙ 10  𝐻𝑧
From here 𝜐𝜐 = 3 ∙ 101,2 ∙ 10 = 2500
Problem 5. The antenna of the television receiver B receives,

along with the wave from the broadcasting center A, also the wave
reflected from the object C. The distances are shown in the figure. What
happens to the picture on the TV screen? The width of the screen is 0.5
m. Frames on the screen change with a frequency of n - 20s-1. The image
consists of N = 600 lines

9 km

10 km

7 km
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Solution. Since the reflected signal travels a distance of 16 km and
the direct signal travels 10 km, the reflected signal will arrive with a delay𝛥𝑡 = 𝛥𝑇/𝑐 and cause a blurring (splitting) of the image on the screen by
the amount of 𝛥𝑙 = 𝜐𝛥𝑡
where υ is the speed of the electron beam on the screen.

The length of one line is equal to l (by screen width), and the
length of N lines is equal to Nl. This electron beam travels this way in
time 1/n, so 𝜐 = 𝑁𝑙1/𝑛 𝑁𝑛𝑙
from which 𝛥𝑙 = 𝑁𝑛𝑙𝛥𝑡

Substitution yields𝛥𝑙 = 600 ∙ 20 ∙ 0,5 6 ∙ 103 ∙ 10 = 0,12 𝑚 (12 𝑐𝑚)
Problem 6. It is known that the radio galaxy 3C295 is distant from

us at a distance R = 1.85 • 1010 pc (1 parsec = 3.086 • 1016m). According
to Hubble's law, it is moving away from us at the speed of𝜐 =  𝐻𝑅,
where H is the Hubble constantН ≅  75 𝑘𝑚/𝑠𝑀𝑝𝑐

Determine the red shift in the spectrum of the radio galaxy.
Solution. The red shift value is determined by the Doppler effect

for optical phenomena, according to which , /^2

𝑣 = 𝑣′ 1 − 𝜐𝑐1 + 𝜐𝑐 cos 𝜃
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In our case θ = 0, and cosθ = 1.
From Hubble's Law𝜐 = 75 𝑘𝑚𝑠 1,85 ∙ 10 𝑀𝑝𝑐𝑀𝑝𝑐 ≅ 1,39 ∙ 10 𝑚𝑠
Since it follows from Doppler's law that1𝑇 = 1𝑇′ 1 − 𝜐𝑐1 + 𝜐𝑐

then 1𝜆 = 1𝜆′ 1 − 𝜐𝑐1 + 𝜐𝑐
Substituting the velocity 𝜐 considering that𝜐𝑐 = 0,463; 𝜐𝑐 = 0,214

gives 1𝜆 = 1𝜆′ √0.7961.463 ;
from which 𝜆 + Δ𝜆𝜆 = 0,6

Finally Δ𝜆𝜆 = 0,4
Thus, the red shift in the spectrum of the galaxy, measured by the

value of the relative wavelength increase, is 0.4.
Problem 7. Find an expression for the wave function describing

the quantum harmonic oscillator and its energy spectrum.
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Solution.
As we know, in classical mechanics a one-dimensional harmonic

oscillator is a particle making harmonic oscillations under the action of
an elastic force (see Section 5.1.1)𝐹 =  − 𝑘𝑥

The potential energy of such an oscillator is𝑈 = 𝑘𝑥2
and the natural frequency of oscillation

𝜔 = 𝑘𝑚,
from which 𝑈 = 𝑚𝜔 𝑥2

Substitution into the time-independent Schrödinger equation
gives − ℏ2𝑚 𝑑 𝜓𝑑𝑥 + 𝑚𝜔 𝑥 𝜓2 = ℇ𝜓

The solution of the problem is thus reduced to the solution of the
resulting second-order differential equation. To simplify the equation, let
us introduce the notation 𝜌 = 𝑚𝜔ℏ 𝑥;  𝛼 = 2ℇℏ𝜔
then the differential equation takes the form𝑑 𝜓𝑑𝜌 + 𝛼 − ℏ𝑚𝜔 𝜌 𝜓 = 0,
where 𝜓 = 𝜓(𝜌)

We look for the solution of the equation in the form
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𝜓(𝜌) = 𝑓(𝜌)𝑒
where 𝑓(𝜌) = 𝑏 𝜌 ,

Substituting the solution into the original equation gives the
recurrence formula for the coefficients bk𝑏 = (2𝑘 + 1 − 𝛼)(𝑘 + 1)(𝑘 + 2) 𝑏

The resulting solution, however, does not make physical sense,
since it is given by a divergent series. Indeed, at 𝑘 → ∞ 𝜌 → ∞ faster
than the coefficients bk to zero. To avoid this divergence, it is necessary
to limit the infinite series, that is, to require that, starting from some k =
n, the coefficients bn= 0, that is, that2𝑛 + 1 −  𝛼 =  0.

Substituting the value of a gives for the energy spectrum of the
oscillator ℇ = 𝑛 + 12 ℏ𝜔, 𝑛 = 0,1,2 …

Problem 8. Determine, up to constant coefficients, the functional
dependence of the phase velocities of surface waves on the physical
quantities determining them.

Solution. We solve the problem by applying the method of the
theory of dimensions. It is logical to assume that the phase velocity of
gravity waves is determined by the wave number k (wavelength), the
acceleration of gravity g and, perhaps, the density of water p.

Taking into account the above for the phase velocity of
gravitational waves we can write𝜐 = [𝑔] [𝑘] [𝜌]
or
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𝐿𝑇 = [𝐿𝑇 ] [𝐿 ] [𝑀𝐿 ]
from which 𝑥 − 𝑦 − 3𝑧 = 1−2𝑥 = −1𝑧 = 0

The solution of the resulting system of equations gives
x = 1/2; y = - 1/2; z = 0.

It is, in this way,

𝜐 = 𝑔𝜆2𝜋
Similarly, for the phase velocity of droplet waves, assuming that

it depends, in addition, on the surface tension coefficient o, which has a
dimension [N/m], but does not depend on the acceleration of gravity, we
obtain 𝜐 = 2𝜋𝜎𝜌𝜆

Problem 9. Focal length of the optical system f = 0.3 m, the main
planes A and B of the lenses of the optical system are at a distance of 0.1
m from each other. The image of the object SN, located from the front
main plane at distances: 0.2m; 0.5m; and 0.8m, respectively, must be
plotted, and the linear and angular magnification must be determined for
each case (see figure).

Solution. An optical system is a device consisting of several
lenses arranged in such a way that their major optical axes coincide to
form the major optical axis of the system. The plane perpendicular to the
main optical axis that passes through the optical center of a given lens is
called the main plane of that lens.

In the case of an optical system there is no single main plane, but
it is easy to show that any however complex optical system can be
replaced by a set of two main planes spaced at a certain distance from
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each other. The points of intersection of these planes with the main optical
axis are called main points. The distance a from the subject to the front
main plane and the front focal length f1 are counted from the front main
point. The distance from the image b to the main back plane and the back
focal length f2 are counted from the main back point.

Figure 1.

Figure 2.
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Figure 3.
Considering, for example, in Fig. 2 pairs of similar triangles SFN

-MFO and S1F1N1-C1F1O1 provided that f1= f2 = f, we conclude that1𝑓 = 1𝑎 + 1𝑏 ;   𝛽 = 𝑁 𝑆𝑁𝑆 = 𝑏𝑎𝛾 = 1𝛽
where β is a linear magnification;
γ is the angular magnification, that is, the ratio of the tangents of the
angles formed by the ray emanating from the image point lying on the
main optical axis, with this axis, and the ray emanating from the subject
point on the main optical axis and the axis.

From the figures and the above relations it follows that in the first
case (Fig. 1) the image S1N1 is imaginary, straight, magnified, with β =
3, γ = 1/3, in the second case (Fig. 2) the image is real, inverted,
magnified with β = 1.5, γ =2/3, in the third case (Fig. 3) the image is real,
inverted, reduced with β = 0.6 and γ = 5/3.

Problem 10. In the story "The Garin Death Ray" by the famous
Russian writer Alexei Tolstoy, described a formidable weapon, the
principle of which, in the author's mind, is based on the use of the laws
of ray optics and, in particular, mirrors with a hyperbolic surface. What
do you think is the scheme of such a hyperboloid and its effectiveness?
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Is it possible to create a weapon that uses the same optical effect as the
Garin Hyperboloid, but works on a completely different principle, using
other physical laws?

Solution. The schematic of the Garin hyperboloid is shown in the
figure

A parallel beam of light 1-1 from a distant natural source, such as
the Sun, or from a powerful artificial source installed in the focus of the
optical device is directed to the surface of a long-focus concave
hyperbolic mirror 2. According to the laws of ray optics, the light beam
is collected in the focus 3 of this mirror, which coincides with the focus
of another, short-focus hyperbolic mirror (hyperboloid) 4.

Using a system of reflectors, a narrow beam of light coming from
a point source image obtained at focus 3 is directed to the surface of the
hyperboloid and reflected from it as a powerful parallel beam of light 5-
5, in the small volume of which enormous energy is concentrated. Exiting
the optical system through the small aperture 6, the resulting beam of
light destroys and burns everything in its path.

For all its wit, Garin's hyperboloid does not work for many
reasons. Firstly, neither natural nor artificial point light sources exist in
principle, and secondly, it is impossible to manufacture optical system
elements with point focal points located exactly on the main optical axis.
Moreover, it is impossible to exactly match the optical axes and focal
points of the elements of the systems. In other words, it is impossible to
obtain a strictly parallel beam of light from the beginning. An even more
difficult, practically impossible task is the problem of keeping the rays
inside a concentrated beam of small volume. This is explained, first, by
the dispersion of light. The incoherence of the light emitted by any source
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and the impossibility of obtaining a strictly monochromatic light beam,
leads to a very rapid divergence even with a strict initial parallelism of
the beams. Secondly, diffraction of light acts in the same direction, which
essentially boils down to the fact that each particle of medium becomes a
point source and scatters even strictly monochromatic light in all possible
directions.

These difficulties of obtaining and transmitting narrowly
concentrated beams of light at a distance are currently solved by using
fiber-optic light guides, as well as by using quantum generators, lasers,
which will be discussed in detail below, working, however, on entirely
different physical principles.

Problem 11. Using the laws of ray optics, explain the well-known
phenomenon of mirages in the desert, such as the mirage of a tree
standing, seemingly, on the shore of a body of water. Show the course of
the rays in this phenomenon.

Solution. The course of the rays is shown in the figure

The temperature of the desert air, and consequently its refractive
index, changes uniformly with changes in altitude. A layer of hot air is
located directly over the hot sand. As air rises vertically upward, it
gradually cools and its refractive index increases. Accordingly, the rays
of light take different paths from the source to the observer in different
layers of air. The ray 1 coming from the upper point 2 of a tall object 3,
such as a tree, moves in the upper, relatively cooled layer of air, in a
straight line, while the ray 4 coming from the lower layer, at the level of
the sand surface, is curved, as shown in the figure. Crossing in the
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observer's eye, these rays give him the image of point 2. Since the visual
center of the human brain perceives all rays as straight, a person mentally
continues the ray 4 coming into his eye in the direction of the tangent line
of that ray. This ray intersects with the mental extension of the reflected
from the surface of the sand ray perpendicular to it and gives at point 2/
an imaginary image of point 2. As a result, the observer will see a tree
and its imaginary image, which he will naturally perceive as a reflection
of the tree in the pond.

Problem 12. Draw and explain the course of the rays in an optical
microscope. Calculate the magnification and focal length of the
microscope if you know that the objective magnification is 70 and the
eyepiece is 12.

Solution. A microscope is an optical system consisting of at least
two lenses, an objective and an eyepiece. The course of the rays in the
microscope is shown in the figure.

S
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A small object S1S2 to be enlarged is placed at a distance slightly
longer than the focal length f of lens L1, so that its image S'1S'2 is placed
near the focus F2 of eyepiece L2 at a distance slightly shorter than the
focal length f1. The imaginary image of the object S"1S''2 obtained with
the eyepiece L2, which is greatly magnified, is seen by the eye. Its image,
according to the laws of ray optics, is perceived by the eye placed almost
at infinity. Since the retina in the normal state is in the focus of the lens -
the pupil of the eye, the enlarged image of the object S"'1S'"2, appears on
the retina without any tension

Let us denote the magnification of the objective N1, the
magnification of the eyepiece N2, the size of the object H, the size of the
intermediate image x, the size of the final image in the eyepiece viewed
by the eye H1, the magnification of the microscope N. Then we can write
that 𝑁 = 𝑥𝐻 , 𝑁 = 𝐻𝑥 , 𝑁 = 𝐻𝐻
from which it follows that

N = N1N2.
After substitution we obtain that the magnification of the

microscope is
N = 840.

Show on your own that the action of a microscope is equivalent
to that of a magnifying glass, from which it follows that the focal length
of the microscope fm= 0.3 m. For the microscope as an optical system (see
problem 1) 1𝑓 = 1𝑎 + 1𝑏 ; 𝑏 = 𝑁𝑎
where a and b are, respectively, the distances of the object to the lens and
the imaginary image to the eyepiece,𝑓 = 𝑎𝑁𝑁 + 1

Since
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𝑎 ≈ 𝑓; 𝑀 ≫ 𝑙,
then 𝑓 ≈ 𝑓

Problem 13. Determine the magnification of the telescope if it is
known that the focal length of objective A is f1 = 1.6m, and its eyepiece
B has 10x magnification (see figure).

Solution. A telescope is a viewing instrument used to look at very
distant objects, such as celestial bodies. Like a microscope, it is an optical
system containing an objective and an eyepiece (telescopes usually use
long-focus concave mirrors as an objective, and short-focus converging
or diverging lenses as an eyepiece). The eyepiece in the telescope is
mounted so that its front focus is aligned with the rear focus of the lens.
Since the object is removed almost to infinity, its greatly reduced image
appears in the focus of the eyepiece. The figure shows the course of the
rays in a telescope in which, for simplicity, the objective, eyepiece, and
eye C are represented by converging lenses and the retina is represented
by screen D

The figure shows that for a telescope it is not the linear but the
angular magnification that matters. Indeed, the magnification N of the
tube used as a telescope can be calculated as follows.𝑁 = 𝐿𝐿 ≈ 𝛾𝛾
where L2 is the size of the image of the object obtained on the retina (as
on the screen) using a tube;
L3 is the size of the image of an object on the retina of the naked eye.
γ is the angle at which an object can be seen with the naked eye
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The figure shows that𝐿 ≈ 𝑓 𝛾 = 𝑓 𝛾
where
f is the focal length of the pupil of the eye;
L0 is the size of the image of the object in the lens;
f2 and f1 are focal lengths of the eyepiece and lens, respectively.

Substitution yields 𝑁 = 𝑓𝑓
Since the eyepiece is an ordinary magnifying glass, the

magnifying glass formula is valid for it, that is𝑓 = 0,2510
therefore,

N = 64.
Problem 14. Many fiction writers often turn to the image of the

invisible man in their works. It is usually a talented scientist who, using
the laws of ray optics in a witty way, has figured out a way to make it so
that he himself sees everyone, but that no one sees him at the same time.
The question is what way the invisible man came up with and whether it
is possible in principle to come up with such a way.

Solution. Any transparent object can be made invisible by
immersing it in a transparent medium. For this it is enough to give it the
same refractive index as the medium. In this case, the rays of light on the
surface of its interface with the medium and in further movement inside
the body will not experience changes compared to their movement inside
the medium, and the observer will not be able to distinguish this body
from the medium. If a body or medium is opaque, it or the medium will
absorb more rays than it will reflect (compared to a transparent medium
or body), and the body will either stand out against the medium or become
completely invisible. In this case, a person can completely cover himself
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with clothes impregnated with a composition whose coefficient of
refraction is equal to the coefficient of refraction of the air. He can cover
his eyes with a transparent material with the same properties. Since a
human being absorbs more and reflects less rays than air, he will stand
out against the background of the air environment as a dark silhouette,
that is, he will remain visible. Animals have come up with a different way
of doing this. They hide in an opaque, often colored medium, covering
their bodies with a compound with the same coloring and light reflection
pattern as the medium. This method of masking borrowed from the
animals also by the military. It is, however, imperfect and stops working
at close distances, so it is completely unsuitable for invisibility. This is
due not only to the fact that it is impossible to accurately reproduce the
reflection structure of the medium, and the difference between the body
and the medium with decreasing distance to the observer becomes more
and more noticeable. More significant is that the invisible man cannot
hide his eyes in any way. Indeed, if he covers his eyes with a compound
whose index of refraction is equal to the index of refraction of the
medium, he himself goes blind, because the optical system of his eyes
(their refractive power) stops working. An invisible man can, of course,
hide in an opaque environment, for example, by diving deep under water,
or by hiding behind some obstacle where the light reflected by his body
will not reach the observer. But in this case, too, for the same reason, he
will not see anyone unless he uses a periscope, that is, a device that
penetrates the surveillance environment. And yet there is a way to
become invisible, which, incidentally, is widely known. It is enough to
go into a dark room and through a window in that room to observe those
who are in any other illuminated place or in the daytime on the street. In
this case, the observer himself not reflecting visible light, which is simply
not present in the dark room, quietly observes everyone who is in a bright
place and reflects the light falling into his eyes. They are all visible
because their reflectivity is different from that of the environment.
However, none of this has anything to do with science fiction anymore.
However, the invisible man, being a science fiction, also has nothing to
do with science, because neither now nor in the future it can in principle
become a reality.



198

Appendix to Part 4

Problems for chapter 5

Problem 109. A conical pendulum
casts a shadow on a vertical plane. What is
the speed of the shadow at the point removed
from the equilibrium position by distance a
if it is known that the radius r of the
circumference described by the weight of the
pendulum is much smaller than the length of
its thread l (see the figure).

Problem 110. A steel ball is dropped
without initial velocity onto a horizontal
steel plate from height h. If we neglect the
loss of energy of the ball during its motion,
it will make oscillations similar to those
made by a mathematical pendulum. What
should be the length l of the string of a
mathematical pendulum so that it oscillates
with the period of an oscillating ball?

Problem 111. A weight of 0.1 kg is suspended on a spiral spring
with a stiffness factor k = 10 N/m (see Figures a and b).

l φ

r
O

r

O

x

a
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What forces act on the weight in the
equilibrium position and also in the case of its
displacement from the equilibrium position
vertically downwards by the value of x? Which
motion does the weight make, in cases a and b?
How will its law of motion depend on the
magnitude of the displacement? Determine the
law of motion of the weight at a given deviation,
if it is known that the maximum possible
deviation of the weight from the equilibrium
position is 4 10-2 m, and its motion began at a
time equal to zero. Determine the kinetic ℇ  and
potential ℇ  energy  of  the  weight  at  a  time  of
0.0785 s? The mass of the spring is negligible.

Problem 112. Calculate the oscillation periods of the systems
shown in Figures a, b, c if the stiffness coefficients of the elastic elements
and the mass of the load are known.

Problem 113. A mathematical pendulum, the weight of which is
equal to m, and the length of the thread l, forms an oscillating system with
the help of a connection made by an elastic element with stiffness k, one
end of which is fixed motionless, and the other one is connected to the
weight (see figure). Calculate the period of small oscillations of the

𝐿 𝐿𝑃 = 𝑚�⃗�
𝑃

x

a b

c
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system, assuming that the mass of the elastic element is zero, and friction
and air resistance can be neglected.

Problem 114. An oscillating system consisting of two masses m1
and m2, connected by an elastic element, is located on a smooth horizontal
surface (see figure). The stiffness of the elastic element is k. Determine
the period T of free oscillations of the system, deduced from the
equilibrium position by deflecting the weights relative to its center of
mass, if the weights during oscillations move along one straight line
without friction.

Problem 115. The oscillating circuit consists of a coil connected
in series with inductance L = 8 μH and a battery of two charged capacitors
with the same capacity C1 = 10 nF. Determine the frequencies ω and v,

l

k
h

m

l

m1 m2

l1 l2

C
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as well as the period T of the free oscillations of the current i(t) that occur
when the circuit is closed for the cases of capacitors connected in series
and in parallel. Losses in the circuit can be neglected.

Problem 116. A copper or ferrite core is introduced into the
inductance coil of an oscillating circuit with inductance L connected to a
constant capacitance C. How does the natural frequency of the circuit
change?

Problem 117. In the oscillating circuit, capacitor C1 is charged to
voltage U, and capacitor C2 is not charged (see figure). The capacitances
of the capacitors are equal to each other and equal to C. Ignoring the
resistance of the coil L, find the amplitude of the alternating current Im

arising in the coil conductor after the key is closed.

Solving the problems of chapter 5

109. A conic pendulum is a mathematical pendulum whose
weight, suspended on a thread, forms a constant angle φ with the vertical
and describes a circle in the horizontal plane. As can be seen from the
figure of the problem condition, the magnitude x of the deviation of the
shadow of the pendulum from the equilibrium position isх =  𝑟 sin 𝜑.

Since r  <<  l, the shadow of the pendulum performs harmonic
oscillations with a cyclic frequency ω. At the same time 𝜑 = 𝜔𝑡, а 𝜔 =2𝜋/𝑇. The period of elastic oscillations T is determined by the formula𝑇 = 2𝜋 1𝑔

С1

С2
L
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Speed of shadow movement

𝜐 = 𝑑𝑥𝑑𝑡 = 𝑟𝜔 cos 𝜔𝑡 ;  cos 𝜔𝑡 = √𝑟 − 𝑎𝑟 ;  𝜐 = 𝑔(𝑟 − 𝑎 )𝑙
110. 𝑙 = 2
111. Both in the first and in the second cases the force of gravity

directed vertically downward and the force of spring tension applied to
the weight according to Newton's third law vertically upwards act on the
weight (see the figure of the problem condition). In the first case (Fig. a),
these forces balance each other, and the weight is stationary relative to
the Earth. In the second case (Fig. b), the force stretching the spring
exceeds its tensioning force, and the weight moves downward with a
deceleration. It is known that for relatively small deflections, the spring
tension force (tension or compression) is proportional to the deflection,
directed against it, and leads to harmonic oscillations of the weight. The
law of motion in this case is described by a differential equation, the
solution of which has the formх =  𝐴 sin  (𝜔𝑡 +  𝜑 ),
where
A is the amplitude of oscillations,
ω is the cyclic frequency;
ωt is the phase of oscillations;
φ0 is the initial phase.

Cyclic frequency and oscillation period T are related by the
equiation 𝜔 = 2𝜋𝑇

In our case 𝜑 =  0,
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𝑇 = 2𝜋 𝑚𝑘 ;  ℇ = 12 𝑚𝜐 ;  ℇ = 12 𝑚𝜐
where 𝜐 =  is the speed of the weight;

Т = 0,628 s;
t = T/8.

After appropriate substitutions we obtainℇ − ℇ = 𝑘 𝐴4 = 40 𝐽.
112. In the systems in the figures of the problem conditions the

elastic elements are connected in parallel (a,  c)  and  in  series  (b). The
stiffnesses of systems with different connection of their elastic elements
are found from the well-known relation

F = kx.
In the case of parallel connection of elastic elements:

х1 = х2 = х, F = F1 + F2 and k = k1 + k2.
In the case of their connection in series:х =  х  +  х , 𝐹 = 𝐹 =  𝐹  𝑎𝑛𝑑 𝑘 =  𝑘 𝑘𝑘 + 𝑘  .
The period of oscillation of the corresponding system is calculated

by the formula derived from the equation of motion𝑇 = 2𝜋 𝑚𝑘
113. Let the deviation of the system from the equilibrium position

be expressed by the generalized coordinate q.  In  this  case,  the  rate  of
change in the magnitude of the deviation of the system is . There is no
change in the total energy of the system, according to the law of
conservation of energy, i.e. ℇ = 0. The total mechanical energy of the
system in the absence of friction and air resistance at each moment of
time is the sum of its kinetic energy ℇ  proportional to the square of
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velocity , and the potential energy ℇ  proportional to the square of
deviation q ℇ = 𝐴𝑞 + 𝑏 𝑑𝑞𝑑𝑡

It follows that𝑑ℇ𝑑𝑡 = 2 𝑑𝑞𝑑𝑡 𝐴𝑞 + 𝐵 𝑑 𝑞𝑑𝑡 = 0
Since in dynamics ≠ 0, from the latter expression we obtain𝑑 𝑞𝑑𝑡 = − 𝐴𝐵 𝑞
The resulting equation is the equation of harmonic (undamped)

oscillations (see Section 5.1) with cyclic natural frequency

𝜔 = 𝐴𝐵
For harmonic oscillations of the system, as is known,𝑞 = 𝐶 sin 𝜔𝑡 ; 𝑑𝑞𝑑𝑡 = 𝐶𝜔 cos 𝜔𝑡
The potential energy of the system in this case consists of the

potential energy of the elastic element kq2/2 and the potential energy of
the weight mgh (see the figure of the problem condition).

Here ℎ = 𝑙 − 𝑙 − 𝑞 ≈ 𝑞2𝑙
(The approximate value of h is found by decomposing the radical

into a power series and discarding all its terms above the second order of
smallness, Appendix 2).

The kinetic energy of the system is equal to the kinetic energy of
the weight
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12 𝑚 𝑑𝑞𝑑𝑡
Comparing the original expression for total energy with its value

for harmonic oscillations, we find that𝐴 = 12 𝑘 + 𝑚𝑔𝑙 ; а 𝐵 = 𝑚2
It is, in this way,

𝑌 = 2𝜋 𝐵𝐴 = 2𝜋 𝑚𝑙𝑘𝑙 + 𝑚𝑔
114. The oscillations of the weights (see the figure of the problem

condition) occur with respect to the center of mass C, which is stationary
with respect to them. The oscillations of the weights are harmonic and
occur in antiphase (the instantaneous velocities are opposite in direction).
The periods of oscillation equal to each other in connection with the
immobility of the center of mass relative to the parts of the system are
found by the usual formulas for harmonic oscillations. The stiffness
coefficients k1 and  k2 of parts l1 and l2 of the elastic element are
respectively inversely proportional to their lengths so that𝑘 = 𝑘 𝑙𝑙 ;  𝑘 = 𝑘 𝑙𝑙

The parts of the system l1 and l2 are inversely proportional to the
masses of the weights.𝑙 = 𝑚 𝑙𝑚 + 𝑚  и 𝑙 = 𝑚 𝑙𝑚 + 𝑚

Substituting the data and the given values of masses and
stiffnesses into the formula for the period of oscillation of the parts of the
system gives 𝑇 = 𝑇 + 𝑇 = 2𝜋 𝑚 𝑚𝑘(𝑚 + 𝑚 )
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115. The equation of free oscillations for the generalized
coordinate q occurring in an oscillating circuit in the absence of losses,
as in the case of any other oscillating system, is𝑑 𝑞𝑑𝑡 + 𝜔 𝑞 = 0

If we choose the electric charge as the quantity q, then for the
cyclic frequency of oscillations and it takes place𝜔 = 1𝐿𝐶

When the capacitors are connected in parallel, the capacitance of
the battery, C = 2C1 and when connected in series, C = C1/2.

Substituting the given values gives:
for the parallel connection of capacitors 𝑣 = 400 кГц, 𝜔 = 2,512 МГц, Т =  2,5 μs, and for their connection in series -𝑣 = 800 кГц, 𝜔 =  5,024 МГц, Т =  1,26 мкс.
116. Variable magnetic field of electromagnetic oscillations of the

circuit induces inductive emf in the coil core according to the law of
electromagnetic induction. Under its influence in the copper core, which
is a conductor, vortex induction eddy currents arise, which, according to
the Lenz law, weaken the coil's own magnetic field and, accordingly, its
inductance. No currents occur in the ferrite core, which is a dielectric. On
the other hand, a ferrite core made of ferromagnetic material increases
the inductance of the coil many times over. Since, regardless of the type,
all harmonic oscillations are described by the same equation, see solution
of Problem 113, then 𝑑 𝑞𝑑𝑡 = −𝜔 𝑞

At the same time

𝜔 = 1𝐿𝐶
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The natural frequency of the circuit will increase if a copper core
is introduced into the inductor coil. If a ferrite core is introduced, the
frequency will decrease.

117. Before the circuit is closed (see the picture of the problem
condition) all energy of the system is contained in capacitor 1 and is equal
by definition to CU2/2. At the moment the circuit is closed, the current in
the coil and therefore the electrical energy in it is zero, and the energy of
the system is still concentrated in capacitors 1 and 2. At the same moment
the initial charge CU is redistributed equally between the capacitors.
According to the law of conservation of charge in the capacitor system
according to the relation CU  =  2CU0, the voltage U0 is  set.  If  the
capacitors are connected in parallel, their capacitances are added, so U0

= U/2. The energy of the system decreases to CU2/4.
By the time the current in the inductor coil reaches its maximum

amplitude value Im, the capacitors are discharged, all energy of the system
is concentrated in the inductor coil and is equal by definition to LIm

2/2.
According to the law of conservation of energy LIm

2/2  = CU2/4. From
here

𝐼 = 𝑈 𝐶2𝐿
Problems for chapter 6

Problem 118. An electromagnetic wave of length λ = 300 m is
modulated by a sound wave with frequency v = 500 Hz. How many
electromagnetic oscillations n fit in a sound wave in one period.

Problem 119. How will the wavelength and its frequency change
when moving from one medium to another?

Problem 120. Water is slowly poured into a cylindrical tube of
height h = 1 m. At what heights of water levels in the pipe will the sound
of a tuning fork with a frequency of v = 331 Hz above it increase
significantly? The speed of sound in air is 331 m/s.
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Problem 121. How will the tone of a tuning fork, wind
instruments, and the human voice sound different in a decompression
chamber compared to their tone in air?

Problem 122. A supersonic jet flew over the observer at a height
of h = 5 km with a speed υ, twice the speed of sound u. How far away
was the plane from the observer when he heard the sound?

Problem 123. A racing car with a siren turned on, sounding at a
frequency of v0 = 400 Hz, raced towards a traffic policeman at a speed of
85 m/s. The policeman decided that the driver of the car violated the
standard frequency of the siren (400 ± 25 Hz). So he demanded, using a
whistle that sounded at a frequency of 15 kHz, that the car stop, but the
driver did not respond to this command and drove by. Later, when the
incident was investigated, the driver claimed that he had not violated
anything, because his siren sounded at 400 Hz (as proof, he presented a
frequency meter reading), and that he had not heard the policeman's
whistle. The policeman, on the other hand, showed his whistle, claiming
that it was impossible not to hear the sound of his whistle. The police
officer who handled the case, to the surprise of those present, took out a
notebook and pen and began to count something there. After a few
minutes, he smiled and said that both the driver and the policeman were
right, and he let the driver go in peace. Why did the police officer do that?

Problem 124. At what maximum distance lmax can a ship's radar
detect a target at sea, if its antenna is at h = 25 m above sea level? At
what frequency f should the radar emit pulses? How can the range of the
radar be increased?

Problem 125. What is the de Broglie wavelength of the neutrino,
as well as the proton, accelerated by the potential difference of U = 3,0
MV?

Problem 126. One of the first experiments that made it possible
to measure the speed of light with a high enough accuracy was the Fizeau
experiment. It consisted in that the light beam from the source S was
passed with the help of a focusing deviceΦ through a narrow slit between
the teeth of a rotating wheel K with the number of teeth n = 720 and was
directed to the mirror З, located at a distance l = 8.7 km (see the figure).

S
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The light reflected off the mirror in the opposite direction. Once again
passing through the slot between the teeth of the wheel, it was caught by
the observer H. Calculate after Fizeau the speed of light with, if according
to Fizeau the minimum speed of the wheel f, at which the light reflected
from the mirror was not yet visible to the observer, was equal to 14.5 s-1.
What other more accurate methods of measuring the speed of light do you
know

Problem 127. What explains the blue color of the sky? What color
is the sky on the moon and why? How does white lettering on a red
background look when illuminated with green light? How do you explain
the red color of the setting sun and the evening dawn?

Problem 128. In interference there is a mutual weakening or
amplification of the intensity of light rays in a certain area. Doesn't this
violate the law of conservation of energy?

Problem 129. Why is the interference pattern observed only in
sufficiently thin films (e.g., on fat films spread on the surface of solids,
on films of gasoline on the ground, etc.)? The coloring of thin films
resulting from interference is called iridescence. Are the colors reflecting
the interference pattern spectrally pure?

Will there always be a maximum illuminance on the screen at
point O (see figure), from two coherent monochromatic light sources A1
and A2? What is the distance x (OM) between the two nearest maxima
(minima) of illumination if A1A2 = 1 mm, L = 3 m, λ = 600 nm?
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Problem 130. A system consisting of a flat-convex lens, which
lies convex side down on a flat horizontal glass plate, illuminated by a
vertical beam of monochromatic light. When this system is observed in
reflected light (rays 1,2), a dark circular spot surrounded by light and dark
concentric rings can be seen. This picture is called Newton's rings (see
figure).

Explain the appearance of Newton rings and calculate the radius
r3 of the third dark ring. Radius of curvature of convex side of lens R =
1m. The wavelength of light illuminating the system is λ = 500 nm.
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The deviation of the illuminating light beam from the vertical can
be neglected.

Problem 131. A monochromatic beam of light with wavelength λ
is incident at angle β on a diffraction grating with period d. It is known
that for a normal incidence of light on a diffraction grating (β =  0) its
formula is 𝑑 sin 𝜑 = 𝑘𝜆

where φ is the angle between the direction of the beam reflected
from the grating and the normal to the grating plane.

How will the diffraction grating formula change when 𝛽 ≠ 0?

Solving the problems of chapter 6

Determine the period of sound oscillations by the formulaТ  =  1/𝑣 =  2 𝑚𝑠. Electromagnetic wave propagation period𝑇 = 𝜆с , 𝑇 = 10 𝑠.
It is, in this way, 𝑛 = 2 ∙ 1010 = 2000.
119. A wave of a given frequency v incident on the boundary of

two media causes particles of the boundary surface to oscillate with the
same frequency. These oscillations, in turn, are transmitted from surface
particles, as sources of secondary waves, to all particles of the second
medium and, therefore, cause a wave of the same frequency to propagate
in it. This means that the frequency of the wave does not change when
crossing the boundary of two or more media. However, the speed at
which the wave propagates depends on the nature of the medium in which
it propagates. Since wavelength λ is proportional to velocity, 𝜆 =  𝜐/𝑣,
the wavelength will change as much as its velocity by the same factor.

120. Under the action of the running sound wave emitted by the
oscillating tuning fork and the wave reflected from the water surface of a
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given level, a standing wave occurs in the air column of the tube. The
node of this wave is formed at the surface of the water, and the antinode
is formed at the open edge of the pipe. In a standing wave, as we know,
the distance between the closest nodes is half the wavelength λ, and the
distance between the node and the closest antinode is a quarter of the
wavelength. It follows that the height of the air columnℎ = 𝜆4 + 𝑘 𝜆2
where k is the number of possible wave nodes, k =0; 1; 2;...

Since 𝜆 = = 1 м, and the height of the tube is also 1 m, the
value of k can only take values 0 and 1. At k =0 h1 = 0.25m, and the water
level is -0,75m; at k = 1 h1 = 0.75m, and the water level is 0.25m.

121. The tone (pitch) of a monochromatic sound wave emitted by
a body that makes harmonic oscillations, such as a tuning fork, is
determined by its frequency v and the properties of the sounding body.
Musical instruments, vocal cords, etc. emit sound, however, in a certain
spectrum, which is a mixture of different frequencies (harmonics). The
tone of the sound is determined by the frequency of the harmonic with
the greatest intensity (amplitude), and the number of harmonics
determines the timbre of the sound.

The human larynx, as well as the trumpet of wind musical
instruments, are resonators of sound oscillations (acoustic resonators). A
resonator, as we know, is a device that amplifies sound waves whose
frequencies coincide with its natural frequency, calculated according to
the formula 𝑣 = 𝜐𝜆

Unlike the frequency and length of a monochromatic sound wave,
the propagation velocity of the harmonics of complex sound depends
significantly on the propagation medium. In decompression chambers,
air, which is basically a mixture of oxygen and nitrogen, is replaced by a
breathing gas mixture consisting of oxygen and helium. As a result, the
average molar mass of the medium is significantly reduced in them and,
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accordingly, the speed of sound and the frequency of natural vibrations
of resonators (larynx, wind instrument pipes, etc.) are increased.
Increasing their resonating natural frequency leads to an increase in tone
and loudness.

122. Let at the moment of time when the sound originated at point
B has reached the observer at point A, the plane is at point C (see figure).
This means that during the time t, between the moment of sound emission
and the moment when the observer heard it, the plane traveled the
distance BC = υt. During the same time the sound traveled the distance
to the observer BA = ut. The front of the sound wave arising in the air
during the flight of an plane is an envelope of spherical waves emitted at
each of the previous moments of time. It forms a cone, which is called a
sonic cone. In other words, AB is the radius R of the spherical front of the
wave emitted at point B. From right-angled triangle ABC it follows that
AB = BC sinφ, and from triangle ADC, sin 𝜑 = . Therefore = = 𝑎𝑛𝑑 𝐴𝐶 = 10 𝑘𝑚.

123. The police officer did the right thing, because he, unlike the
policeman and the driver, knew physics and remembered that the Doppler
effect applies in acoustics, according to which the frequency of acoustic
waves perceived by the observer depends on the relative speed of the
sound source and the observer. In the first case it was
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𝑣 = 𝑣 1 + 𝑢𝜐1 − 𝑢𝜐
Thus, the police officer heard the siren sounding at a frequency of

526 Hz, while to the driver the whistle sounded at a frequency of 19.74
kHz, which is usually already poorly perceived by the human ear.

124. Let the upper point A of the radar antenna, which radiates
electromagnetic waves, be at a point at height h above sea level (see
figure). It is known that waves, including electromagnetic ones,
propagate in a straight line along the radial lines of the sphere. On the
other hand, one of the most important properties of wave processes is
diffraction, which consists in the fact that waves bend around obstacles
on their way, the size of which is comparable with the wavelength.
However, in the ultrashort wavelength range in which radars operate, the
deviation from straightness caused by diffraction is so small that it can be
neglected. In this case, the contact point B of the radar beam AB with the
spherical sea surface of the globe centered at point O determines the
desired maximum range AB =lmax of target detection.

Since it follows from right-angled triangle ABO that 𝑙 =(𝑅 + ℎ) − 𝑅 , then finally𝑙 = ℎ(2𝑅 + ℎ) ≈ 18 𝑘𝑚

A
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So that the pulses emitted by the radar do not overlap and interfere
with each other, they must be emitted at a certain interval, so that the
previous pulse reflected from the target returns to the locator receiver
before the next pulse appears. This means that the period of emission T
must satisfy the inequality 𝑇 ≥ 2𝑙𝑐
and 𝑓 ≤ 𝑐2𝑙 = 3800 𝑠

The radar range is determined not only and not so much by the
maximum possible distance of the locator, but mainly by its power N.
Since the front of the emitted wave is a sphere, the amount of emitted
energy in each given point of space, is distributed uniformly inversely
proportional to the square of the sphere radius R, equal to the distance
from the radar to the target. Otherwise, the intensity I (power per unit
surface of the wave front) 𝐼 ≈ 𝑁𝑅

On the other hand, the target, reflecting the radio signal, is a
source of secondary waves. Therefore, the intensity of the signal received
by the radar is, in turn, inversely proportional to the square of its distance
to the target. Thus, the resulting intensity is inversely proportional to the
fourth power of the distance to the target.

Consequently, to increase the range of target detection, for
example by 4 times, you need to increase the power of the locator by 44

= 256 times.
125. The de Broglie wavelength is calculated by the formula𝜆 = ℎ𝑚 𝜐
The speed of motion of neutrinos is known to be close to the speed

of light in the vacuum, i.e. we can assume that 𝜐  =  𝑐 = 3 ∙  10  𝑚/𝑠.
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The assumed rest mass of the neutrino 𝑚  ≈  30 𝑒𝑉/𝑠  =  5,3 ∙10    𝑘𝑔. It is, in this way,𝜆 = 4,2 ∙  10 𝜇𝑚
This wavelength is within the range of X-rays.
For the proton 𝑒𝑈 = 𝑚 𝜐 /2. From here𝜆 = ℎ2𝑒𝑈𝑚 = 1,7 ∙ 10   𝑚
This wavelength is in the range of hard gamma rays.
126. If during the time t, while the light travels to and from the

mirror, the wheel manages to turn by such a minimum angle φ that a tooth
takes the place of the slit, the light is not picked up by the observer. The
observer will see the light, if another nearby slit takes the place of this slit
in the specified time.

According to the conditions of the problem𝜑 = 2𝜋2𝑛 . а 𝑓 = 𝜑2𝜋𝑡
where 𝑡 = , 𝑡ℎ𝑒𝑟𝑒𝑓𝑜𝑟𝑒 𝑐 = 4𝑓 𝑛𝑙 ≈ 3,14 ∙ 10  𝑚/𝑠.

French physicist Léon Foucault used a rotating mirror instead of
a rotating wheel, which allowed him to obtain a more accurate value of
the speed of light c = 2.98 108 m/s. Even more accurate value was
obtained by Albert A. Michelson using an improved method of rotating
mirrors and the interferometer he invented. He managed to get a very
close to the modern value of c = 2.99796 108 m/s.

127. The Earth's atmosphere has a large scattering effect. The
centers of scattering are molecules of atmospheric gases and dust
particles of negligible size. As the English physicist John William Strutt,
3rd Baron Rayleigh, showed, the intensity of light scattering on
microparticles, the size of which is small compared to the wavelength of
light, is inversely proportional to the fourth power of the wavelength.
From the modern point of view scattering has a quantum-mechanical
inelastic character. It is considered as a result of absorption by
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microparticles of photons of one frequency with their subsequent
excitation and emission by them of photons of another frequency of
higher energy of the short-wave spectrum. As a result, when white
sunlight passes through the atmosphere, photons of the long-wave
spectrum, that is, red light and light of red hues are absorbed, and light of
blue hues is emitted, taking on average a blue coloring. We see the Sun
itself as yellowish, because some of the short-wave light scattered by the
atmosphere does not reach us

At sunrise and sunset, when the Sun is inclined toward the
horizon, its rays travel the greatest distance in the atmosphere, which
causes scattering, in addition to blue and blue rays, also yellow and green.
In this case, mainly red rays come to us from the Sun. These same rays,
especially when the air is saturated with dust particles or droplets of
moisture, color the sky and the clouds floating in it near the rising or
setting Sun red, creating morning and evening dawn. The same is
observed at moonrise and moonset.

On the Moon, where the atmosphere and, consequently, the
centers of scattering and radiation are absent, the sky is black, on which
clearly stands out the white-hot Sun, the blue Earth, whose atmosphere
secondarily emits blue scattered sunlight, and other luminaries.

A white lettering on a red background reflects the entire spectrum
of visible light and looks white, but when illuminated by green light it
will reflect green rays, which, mixed with the red rays of the red
background, will give the impression of a dark coloring.

128. No, it is not violated, because at interference the mutual
damping of waves in some areas is exactly compensated by their mutual
amplification in other areas. Energy does not disappear, but is only
redistributed in space.

129. If the film thickness exceeds the wavelength of incident
visible light (tenths of a micron), then the waves reflected from the plane-
parallel surfaces of the film are not strictly coherent. This is because the
coherence of the rays is lost as they move inside the film due to
interaction with incoherent rays falling on the film. Moreover, even if
approximate coherence is preserved, the density of maxima and minima
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increases sharply with increasing film thickness and the latter become
indistinguishable.

The rainbow colors produced in thin film by interference are not
purely spectral, as they result from the attenuation of some spectral
components and amplification of others and their subtraction from the
white color.

At a point distant from the coherent sources, both maximum
illuminance in the case of in-phase sources and minimum illuminance in
the case of antiphase sources can occur.

The required distance x will be found from the condition of
maxima (minima) for k =1, according to which the difference of path
equals the wavelength. This condition, as can be seen from the figure of
the problem condition, has the form𝐿 + (𝑥 + 𝑑) − 𝐿 + (𝑥 − 𝑑) = 𝜆;𝑑 = 𝐴 𝐴2

Substitution yields
х = 1,27 mm.

130. Newton rings appear as a result of interference resulting from
the superposition of coherent light beams reflected from the surface of a
lens and a flat plate forming a thin air layer (thin plate). The condition of
the interference minimum (dark ring) is determined by the difference in
travel d and has the form 𝑑 = (2𝑘 + 1) 𝜆2

On the other hand, the difference in travel, taking into account the
change in beam travel by λ/2 in its reflection, is d = λ/2 + 2h, so

2h = kλ.
Let us consider an approximately vertical beam of parallel rays

incident at point A (see the picture of the problem condition) of the
convex surface of the lens, which is at distance h from the flat plate. Draw
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the radii R from this point to the center O of the lens, and from the point
O perpendicular to the plate. Since h << rk and R, it follows from the
drawing of the figure that ℎ =  𝑟 /2𝑅. After appropriate substitution we
obtain that 𝑟 = √𝑘𝑅𝜆

For the third ring (k=3)𝑟 = 3 ∙ 500 ∙ 10 = 1,23 𝑚𝑚
131. As can be seen from the figure, the difference of path

between the rays reflected by the edges of neighboring slits is
AD - BC = d(sin φ – sin β).

From this we get the following formula for the diffraction grating
d(sin φ – sin β) = kλ
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Chapter 7. Fundamentals of Quantum Physics

Physics, as you know, has taken a very difficult, sometimes quite
twisting and dramatic path of development. In ancient times, it was not
yet an independent science, but was considered part of the philosophy
studying Nature (Natural Philosophy), and had, like all philosophy, a
purely speculative nature. Thinkers of this period, including Heraclitus,
Democritus, Epicurus, Plato, Aristotle, and others, sought to construct a
general conception of the world from which truths reflecting its particular
manifestations would emerge. Most of them denied the significance of
experience, which follows from sense perceptions that, in their view,
distort the true picture of the world. The penetration into the essence of
things by means of pure mind alone allowed them, nevertheless, to make
a number of ingenious conjectures related to the ideas of matter and spirit,
space and time, imaginary perceptions and ideas, atoms and matter,
vibrations and waves, sound and light, motion and development, etc.

7.1. Pre-Quantum period in the development of physics.

However, the science of antiquity, detached from practice, proved
to be unproductive and, therefore, already in the Middle Ages it gave way
to a contemplative science based on observation and physical experiment.
At its foundation stood such giants of medieval science as Leonardo da
Vinci, Gilbert, Galileo, Kepler, Newton, Descartes, Huygens, Leibniz
and others.

The new experimental science created by them, later called
classical science, developed according to the level of experiment
technique from simple to complex and was reduced to the theoretical
generalization of the results of observations and experiments. Abstract
comprehension on the basis of mathematical analysis of established
experimental facts led science to the disclosure of the nature and
mechanisms of the behavior of surrounding things and the establishment
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of the rules of this behavior (laws), uniquely linking the state of things
with their properties and the surrounding conditions.

The results of observations and physical experiments have
increasingly strengthened scientists in the conviction that the patterns of
functioning of real reality are strictly deterministic and objectively
determined by its material nature. Hence it was concluded that the laws
of Nature, established on the basis of observation and experiment, are
universal and depend neither on the place and time of their observation
nor on the observer himself. On this basis these laws were given the status
of objective, absolute and eternal truths. In doing so, practice was adopted
as the only criterion of truth, ruling out the possibility of any arbitrary
interpretation. In other words, inferences, no matter how logical they
might seem, could not be taken into account as evidence of truth unless
they were corroborated by observation or experiment.

The above approach was in full accordance with direct
perceptions of the surrounding reality and was confirmed by numerous
projects implemented in practice, as well as the realization of predictions
expressed in accordance with the scientifically established laws of
Nature.

The triumph of the principle of determinism was the high
accuracy of the French physicist Laplace's predictions of the behavior of
the planets of the solar system, which were confirmed in practice. His
fundamental work "Celestial Mechanics" is still used today to predict the
timing of lunar and solar eclipses, the planetary closest approaches, the
movements of comets, etc. The principle of determinism is also
confirmed by the practice of daily activities and technical progress. As
for the so-called random events that cannot be predicted, they were seen
not as evidence of a violation of the principle of determinism, but as the
result of the limitations of our knowledge. It was from this point of view
that phenomena of Nature, including atmospheric cataclysms, tectonic
processes acting in the lithosphere, such as volcanic eruptions,
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earthquakes, etc., which were not yet fully understood, were considered.
All of them were assumed to be regular, causally conditioned and
considered as conditionally random. The probability assessing the
possibility of their occurrence was characterized by a subjective value
that increased with the level of knowledge.

Pre-quantum physics and its underlying postulates of
determinism, causality and universality of Nature's processes for a long
time, up to the beginning of the 20th century, were considered
unshakable. However, facts gradually began to accumulate that entered
into an irreconcilable contradiction with them.

7.2. Physics at a Crossroads

With the penetration of science into the microcosm and the depths
of the cosmos, serious doubts have arisen about the possibility of
obtaining reliable knowledge at all structural levels. Already during the
transition to atomic-molecular levels, it became obvious that there is no
real possibility to describe the thermal processes taking place there using
only the laws of classical mechanics. This is due to the fundamental
impossibility of experimentally obtaining all the necessary information
for compiling the corresponding equations of motion of particles, as well
as determining the initial conditions necessary for the complete solution
of the mechanical problem. In order to keep the principle of determinism
intact in this case, statistical physics was created, which began to consider
macro-processes as the result of averaging of micro-processes on
sufficiently large time intervals comparable with the time of observation.
The theory of relativity, even more so than statistical physics, has
introduced into scientific thinking the notion that our knowledge is
relative. At the same time, the conviction of the unconditional objectivity
of cognitive processes, based on the notion of their independence from
the observer, was shaken. Such an approach, from the point of view of
the theory of relativity, is purely approximate, since the observer himself
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is part of the world he observes. The transition to the study of
microsystems at the levels of the internal structure of atoms, atomic
nuclei and the depths of space corresponding to the initial stages of the
Universe has further shown that the same real systems under the same
conditions behave differently so that their behavior can be predicted only
with a certain probability.

It all began with the discovery of facts related to the interaction of
matter and radiation, which did not fit into the laws of mechanics and
electrodynamics. Many of these facts have already been mentioned above
(see section 6.6.4). To resolve this crisis, some physicists have proposed
hypotheses according to which matter and radiation under certain
conditions lose their inherently specific corpuscular and wave properties.
Radiation, along with wave properties, acquires corpuscular properties,
and matter, along with corpuscular properties, acquires wave properties.

This means, as we already know, that between a free particle with
discrete values of energy Ɛ, momentum P, and a monochromatic wave
with cyclic frequency ω and wave number k there is an unambiguous
correspondence such that the same relations apply to bothƐ = ħ𝜔𝑃 = ħ𝑘 (7.1)

This hypothesis is known as wave-particle duality. It was the
result of generalization of experimental data and allowed to coordinate
the theory based on the laws of mechanics and electrodynamics, which
did not contain the wave-particle duality, with practice, where it was
unambiguously manifested. This hypothesis helped to explain the whole
set of facts that did not fit into the theory. In order to better understand
the peculiarities of quantum physics based on this hypothesis, it is
necessary to consider the above-mentioned facts in more detail.
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7.2.1. Thermal radiation

Thermal radiation is the electromagnetic radiation emitted by
matter and arising from changes in its internal energy. Thermal radiation,
from a classical point of view, has a continuous spectrum with intensity
maxima at certain wavelengths. This radiation, as experience shows,
takes place for any bodies in any state at any temperature.

Let us consider an arbitrary body and mentally surround it with a
shell with a perfectly reflecting inner body surface so that the radiation
reflected by the shell from the body is absorbed by the body again. As a
result, there is a distribution and continuous exchange of energy between
the body and the radiation that fills the space formed by the body and the
shell (Fig. 7.1).

Figure 7.1.

If the distribution of energy between the body and the radiation
remains constant for each wavelength of radiation, the state in the body-

body

shell
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radiation system is called equilibrium and is characterized by a certain
temperature. As follows from experience, only thermal radiation can be
equilibrium.

The amount of energy emitted by a unit of body surface in the
entire wavelength spectrum per unit time in all directions is called the
energy luminosity of thermal radiation RT. The sign "T" here and hereafter
means that these quantities characterize radiation at temperature T.

Let the radiation flux dR be emitted in the frequency interval dω,
with this ω,T will be 𝑑𝑅 , = 𝑟 ,  𝑑𝜔 (7.2)
where rRω,T is the coefficient of proportionality called the spectral density
of energy luminosity.

As can be seen from (7.2),𝑟 , = 𝑑𝑅 ,𝑑𝜔
and

𝑅 , = 𝑟 ,  𝑑𝜔 (7.3)

Let the energy flux dΦω,T fall on a unit of body surface dS in the
frequency range dω per unit time, so that part of this flux dΦ'ω,T is
absorbed by the body and part dΦ''ω,T is reflected by it, then

dΦω,T = dΦ’ω,T + dΦ’’ω,T (7.4)
The quantities designated by𝑎 , = ,,  and 𝑏 , = ,, (7.5)

are called absorptivity and reflectivity, respectively.

From (7.4) and (7.5) we see that
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aω,T + bω,T = 1 (7.6)
If a body completely absorbs the radiation falling on it, then it is

called black body. For it

aω,T + bω,T = 1 (7.7)
The amount of thermal radiation energy per unit volume is called

the volumetric energy density of thermal radiation UT . For equilibrium
radiation, the energy density is uniformly distributed over the volume and
depends only on the temperature T.

The quantity 𝑈 , = 𝑑𝑈𝑑𝜔 (7.8)

is called the spectral energy density. It follows from (7.8) that

𝑈 = 𝑈 , 𝑑𝜔 (7.9)

Let inside a closed shell there are several bodies of different
nature, which are in equilibrium with radiation at some temperature T.
Since for equilibrium radiation, by definition, the internal energy remains
constant, the body that emits more energy must absorb more of it. In other
words, rω,T is proportional to aω,T. This means that𝑟 ,𝑎 , = 𝑟 ,𝑎 , = ⋯ = 𝑟 ,𝑎 , = ⋯ = 𝑓(𝜔, 𝑇) (7.10)

where 1, 2,3,... i, ... - are the numbers of the corresponding bodies.

The equation (7.10) is called Kirchhoff's law of thermal radiation,
and the function f (ω, T) is called the universal Kirchhoff function. For
a black body aω,T = 1, so as follows from (7.10),

rω,T = f (ω, T) (7.11)
The universal Kirchhoff function according to (7.11) is the

emissivity of a black body.
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Let us consider a small hole of area S0 in the opaque wall of a
large closed cavity SN such that𝑆𝑆 ≪ 1 (7.12)

It follows from (7.12) that the probability of radiation entering the
cavity returning to hole S0 is practically zero (Fig. 7.2).

Figure 7.2.

 All energy incident on hole S0 is absorbed by cavity SN, so so the
following equation is true for this hole

aω,T ≈ 1.

It follows that a small hole in a large cavity is a perfect model of
a black body. Since thermal radiation is inherent to any body, then
according to Kirchhoff's law for this radiation at a given temperature T

rω,T = f (ω, T) (7.13)

S0

SN
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By measuring rω,T of such a device, it is therefore possible to
determine f (ω, T) for each given temperature. It follows from experience
that the dependence of f (ω, T) on frequency and temperature has the form
shown in Figure 7.3

Using the curves (Fig. 7.3), the value of the energy luminosity
equal to the area covered by the corresponding curve is determined.

rω,T = f (ω, T),

Figure 7.3.

Experimentally, i.e. using curves (see Figure 7.3), the Stefan-
Boltzmann and Wien laws are established (see Section 6.6.2).

7.2.1.1. Classical theory of thermal radiation
The classical theory of thermal radiation was created by the

English physicists John William Strutt, 3rd Baron Rayleigh and James
Jeans in 1900-1909. Here are the main points of this theory. Let the cavity
in the form of a rectangular box l1 × l2 × l3 filled with thermal equilibrium
radiation at temperature T. Let us assume that the walls of the cavity are
completely impermeable and that the radiation in the cavity is in a state
of equilibrium. We already know that the radiation inside such a cavity
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can be represented as a set of standing waves (see Section 6.6.1). Let us
first consider the one-dimensional version, which is modeled by a
mechanical analogue in the form of a string of length l stretched between
two points. Let's call the type or mode of oscillations of the n-th order a
sinusoidal wave, which turns to zero at the ends of the string (standing
wave nodes) and contains n half-waves. For the n-th order mode, we can
thus write = 𝑛, n = 1, 2, 3, … (7.14)

From (7.14) it follows that the wave number of the n-th order
mode 𝑘 = 𝑛 𝜋𝑙 (7.15)

The value of the interval between two consecutive wave values
Δk according to (7.15) isΔ𝑘 = (𝑛 + 1) 𝜋𝑙 − 𝑛 𝜋𝑙 = 𝜋𝑙 . (7.16)

The number of modes dN per unit interval Δk, according to (7.16),𝑑𝑁 = Δ𝑘Δ𝑘 = 𝑙𝑑𝑘𝜋 (7.17)

Let us choose the xOyz coordinate system and consider a wave
vector �⃗�  with projections kBx, kBy, kBz, taking both positive and negative
values. Such a vector describes not a standing wave, but a running wave.
The number of waves running in one direction will obviously be two
times less than that obtained in relation (7.17), so𝑑𝑁(𝑘 ) = , where i = x, y, z (7.18)

The number of waves in the whole cavity of the box is
respectively 𝑑𝑁(𝑘 ) = 𝑙 𝑙 𝑙(2𝜋) 𝑑𝑘 𝑑𝑘 𝑑𝑘 (7.19)
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or 𝑑𝑁(𝑘 ) = 𝑉(2𝜋) 𝑑3𝑘 (7.20)

where V is the volume of the box,

d3kB is an infinitesimal volume in the phase space of the wave vector �⃗�
with axes kBx, kBy, kBz.

In general, for the considered system, the phase space consists of
configuration space (x,  y,  z) and kB -space (kBx,  kBy,  kBz).  It  is  six-
dimensional and is defined by dimensions x, y, z, kBx, kBy, kBz  (see Section
2.5).

Since in this case the wave is spherical, the volume d3kB in kB -
space is the elementary volume of the spherical layer between kB and kB

+ dkB (Fig. 7.4).

Figure 7.4.
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It follows from Figure 7.4 that𝑑 𝑘 = 4𝜋𝑘 𝑑𝑘 (7.21)
Substituting (7.21) into (7.20) gives𝑑𝑁(𝑘 ) = 4𝜋𝑘 𝑉𝑑𝑘(2𝜋) (7.22)

The wave number of kB radiation is, by definition, equal to𝑘 = 𝜔𝑐 (7.23)
where c is the speed of light in a vacuum;

Therefore, 𝑑𝑁(𝜔) = 4𝜋𝜔𝑉𝑑𝜔(2𝜋) 𝑐 (7.24)

Due to the fact that we are talking about the natural oscillations of
an electromagnetic wave, each wave vector �⃗�  corresponds to two
oscillations with mutually perpendicular polarizations, so finally𝑑𝑁(𝜔) = 𝑉𝜔 𝑑𝜔𝜋 𝑐 (7.25)

Concentration of waves𝑑𝑛(𝜔) = 𝑑𝑁(𝜔)𝑉
From here 𝑑𝑛(𝜔) = 𝜔 𝑑𝜔𝜋 𝑐 (7.26)

Assuming that the energy per mode is kT , we obtain𝑑𝑈 , = 𝑘𝑇 (7.27)
where k is Boltzmann number.
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From here, taking into account (7.26), we find that the total energy𝑑𝑈 = 𝜔 𝑘𝑇𝜋 𝑐 𝑑𝜔 (7.28)

and the spectral density𝑑𝑈 , = 𝑑𝑈𝑑𝜔 = 𝜔𝜋 𝑐  𝑘𝑇 (7.29)

The relation (7.29) for the spectral density of radiation is called
the Rayleigh-Jeans formula. Figure 7.5 shows for comparison the
theoretical and experimental curves of spectral density of radiation

Figure 7.5

Figure (7.5) shows that the Rayleigh-Jeans formula coincides with
the experimental curve only in the low frequency region. On the other
hand, from (7.29) we see that

Theoretical curve according to Equation 7.29

experimental curve
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𝑈 = 𝑈 , 𝑑𝜔 → ∞ (7.30)

Thus, the absurd conclusion follows from the Rayleigh-Jeans
formula that the energy and mass of a unit volume of thermal radiation
are infinite.

The energetic luminosity of a black body, according to its
definition, is also infinite, which means that under non-equilibrium
conditions the body must instantly give up (emit) all its energy and cool
down, respectively, to temperature T = 0. All these conclusions from the
classical theory contradict the facts following from the experiment, and
indicate that the classical theory incorrectly describes thermal radiation.
The above situation has been called an ultraviolet catastrophe, as the
discrepancy between theory and practice occurred in the high-frequency
region. The way out of the crisis was suggested by Planck.

7.2.1.2. Planck's theory of radiation
Planck's theory of radiation is based on his hypothesis, discussed

in Sections 6.5.6 and 6.6.3, according to which electromagnetic radiation
is emitted and absorbed by discrete portions of energy, photons, for whichƐ = ħ𝜔

Let, as in the case of classical theory, thermal radiation occurs in
some cavity. Taking into account the Planck hypothesis, the radiation in
the cavity can be represented by a set of electromagnetic field oscillators
with the following natural frequencies

ωn = n ω, where n = 1,2,3,... (7.31)
Thus, the total energyƐ = 𝑛ħ𝜔 (7.32)
An oscillator with energy according to (7.32) is called a quantum

oscillator.
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 * In the state of equilibrium, the probability pn that the oscillator
will have energy Ɛ  that is calculated by the well-known Boltzmann
entropy formula 𝑝 = 𝐵𝑒 Ɛ (7.33)

The constant B is found from the normalization condition,
according to which

𝑝 = 1 (7.34)

Substituting (7.34) into (7.33) gives𝐵 =  1∑ 𝑒 Ɛ (7.35)

and

𝑝 =  𝑒 ħ
∑ 𝑒 ħ (7.36)

The average value of the energy of the quantum oscillator is found
by the formula

Ɛ = 𝑝 Ɛ =  ∑ 𝑛ħ𝑒 ħ
∑ 𝑒 ħ (7.37)

Let us denote ħ𝜔𝑘𝑇 = 𝑥 (7.38)

then

Ɛ = −ħ𝜔 𝑑𝑑𝑥 ln 𝑒 (7.39)



19

In mathematics, it is proved that the series ∑ 𝑒  converges
(see Appendix 2), with ħ

𝑒 = 11 − 𝑒 (7.40)

It is, in this way,Ɛ = ħ𝜔𝑒ħ − 1 (7.41)

In the classical limit (see 7.27)

ħω ≈ kT

In this case, the value of ħω in (7.41) can be replaced and we can
assume that Ɛ ≈ 𝑘𝑇𝑒 − 1 ≈ 𝑘𝑇

This also follows from the expansion of 𝑒ħ
 in a series, where we

can be limited to the first two terms of the series. Then according to (7.41)Ɛ ≈ ħ𝜔1 + ħ𝜔𝑘𝑇 − 1 ≈ 𝑘𝑇.∗
The above allows us, for the transition from the classical to

quantum theory, to replace the value of kT with the value ofħ𝜔𝑒ħ − 1 (7.42)

Thus, to calculate the spectral density, we can use formula (7.29),
replacing kT in it with (7.42).

In other words, taking into account (7.29) and (7.41)
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𝑈 , = 𝜔𝜋 𝑐 ħ𝜔𝑒ħ − 1. (7.43)

The relation (7.43) is called the Planck's law. Planck's law
coincides completely with the experimental curve shown in Figure 7.5.
This allows us to state that Planck's hypothesis about the corpuscular
nature of electromagnetic radiation can be considered proven. The
experimental curve of Figure 7.5 allows calculating the Planck constant
ħ with great accuracy (see Section 6.6.3).

7.2.2. Compton scattering

 One of the proofs of the corpuscular nature of electromagnetic
radiation was obtained in 1922 by Compton in his experiment on the
scattering of X-rays by free electrons. A schematic of the Compton
experiment is shown in Figure 7.6. A narrow beam of monochromatic
radiation with a wavelength λ is directed from the X-ray source S by the
aperture D to the scattering substance B. The scattered radiation is
analyzed by spectrograph C, which determines its spectral composition.

Figure 7.6.

 The Compton experiment found that
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Δ𝜆 = 𝜆 (𝜃) − 𝜆 = 𝜆 (1 − cos 𝜃), (7.44)
where θ is the scattering angle;

λ is the wavelength of incident radiation;

λ'(θ) is the wavelength of scattered radiation;

λc is the Compton wavelength of the electron.

The change in wavelength when scattering electromagnetic waves
according to formula (7.44) is called the Compton effect. This effect
contradicts the classical notion that the wavelength of incident and
scattered light is the same. If, however, we attribute momentum to the
light wave and apply the law of conservation of momentum, then the
relation (7.44) is confirmed.

7.2.3. Photoelectric Effect

The photoelectric effect was discovered by Heinrich Hertz in
1887 and studied by Russian physicist Aleksandr Stoletov in 1887-1889.

Figure 7.7
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Already in the process of these studies, it was discovered that the
photoelectric effect does not obey the basic provisions of Maxwell's
classical electrodynamics.

 The schematic diagram of the photoelectric effect setup is shown
in Fig. 7.7. 7.7. Monochromatic light from the source S of frequency ω
illuminates the cathode C, which is made of the material under study.
This light knocks out the electrons of the upper shells of the cathode
atoms (photoelectrons). These electrons under the influence of the anode
A create a current I (photocurrent) in the photocell circuit, which is
measured with the galvanometer V. By varying the voltage in the circuit
with the potentiometer G, take volt-ampere characteristics for different
light flux Φ (Fig. 7.8). When the voltage between anode and cathode is U
= 0, only a small fraction of photoelectrons with low velocities reaches
the anode.

Figure 7.8.

As the voltage increases, the number of photoelectrons reaching
the anode increases rapidly, and at a certain value of U = UH , when all
the photoelectrons emitted by the cathode per unit time reach the anode,
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the photocurrent reaches saturation. Applying a negative potential to the
anode, which creates a delaying voltage Ur, reduces the photocurrent to
zero. This requires thatm 𝜐 ,2 = 𝑒𝑈 (7.45)

where m0 is the mass of the electron;

υm is the maximum velocity of photoelectrons;

e is the charge of the electron.

According to classical electrodynamics, the energy of a
photoelectron does not depend on the frequency of light, but is
proportional to the light flux (the square of the amplitude of the electric
field strength of the light wave). As it increases, according to (7.45), the
value of Ur should also increase. However, in fact, as can be seen from
the volt-ampere characteristics (Fig. 7.8), the value of Ur does not depend
on the value of the light flux Φ, but increases sharply with increasing
frequency of monochromatic light. Moreover, it turns out that at
frequencies lower than a certain critical frequency defined for each
material

ω < ωcr; λ > λcr (7.46)
the photoelectric effect does not occur at all. In other words, the
phenomenon of the photoelectric effect, as well as thermal radiation,
confirms the fact of the "ultraviolet catastrophe".

Meanwhile, this discrepancy can be easily explained by Einstein's
theory discussed above, which, based on the wave-particle duality,
considers light as a flow of photons (see Section 6.6.3). In this case,
according to the law of conservation of energy and Einstein's theory

Ɛ = ħω – Ɛ’ (7.47)
where Ɛ is the kinetic energy of the photoelectron;

Ɛ' is the ionization energy of the atom, equal to the yield work W.
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It follows from relation (7.47) that when

ħω < Ɛ’ (7.48)
then

Ɛ < 0 (7.49)
which is impossible. It follows that𝜔 = Ɛ ′ħ (7.50)

This is fully confirmed by experiment.

Since the kinetic energy according to Einstein's relation (7.4.7)
depends on frequency and is independent of illumination (at ω =  0
photons are absent and Ɛ = – Ɛ’), it is determined only by the yield work,
constant for each given substance. The value of Ur in this case does not
depend on illumination and increases with increasing frequency.

Thus, the phenomenon of the photoelectric effect also fully
confirms the wave-particle duality of light.

7.2.4. Radiation of the atom. Bohr's Postulates

The concept of the smallest indivisible particle, the atom, has been
known since ancient times. However, it was discovered only in the 19th
century that atoms are the elements that form the simplest chemical
substances.  At  the  same  time,  it  was  found  that  the  atom,  in  turn,  is  a
complex particle with its own internal structure. In 1897, the English
physicist J.J. Thomson, observing the so-called cathode rays, came to the
conclusion that they are a flux of negatively charged particles that are part
of the atom, with a very small mass m0 ≈ 9 ·  10–31 kg. He called these
particles electrons. He also created the first model of the atom. According
to Thomson's model, the atom consists of very small elementary particles,
electrons, which neutralize the positive charge that occupies the entire
volume of the atom, within which the electrons float. In 1903 the
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physicists Ernest Rutherford and Frederick Soddy discovered that the
radioactive radiation of the uranium atom, discovered before that by the
French physicist Henri Becquerel, consists of three components, α-rays,
which is a flow of fully ionized helium atoms, β-rays, a flow of electrons,
and the hard (high-energy) electromagnetic radiation, γ-rays. In 1918
Rutherford investigated the scattering of α-particles on atoms of heavy
elements and found the failure of Thomson's model. It turned out that all
the positive charge of the atom is concentrated in a minuscule part of its
volume and forms a particle, which Rutherford called the nucleus of the
atom. The size of the nucleus, calculated by Rutherford from the results
of the experiment, was only 10-15 m. The size of the atom, equal to 10–10,
turned out to be a hundred thousand times larger. The entire, virtually
empty, volume of the atom, according to Rutherford, is occupied by
electrons, which rotate under the action of Coulomb forces in different
orbits around the nucleus. The number of electrons is equal to the positive
charge of the nucleus. This model of the atom was called the Rutherford
model.

Meanwhile, Rutherford model of the atom, in terms of its
radiation, came into conflict with experience. According to this model,
the electrons rotating around the nucleus, moving with acceleration,
would, according to Maxwell's electromagnetic theory (see Section
4.2.3), continuously emit electromagnetic waves, forming a solid
spectrum of radiation. Experience, however, showed that the emission
spectrum of atoms is linear. In addition, the electrons of the atoms would
have to inevitably fall on the nucleus due to their continuous emission,
giving the atoms extreme instability, which was also in contradiction with
experience.

Direct experiments performed in 1913 by the German physicists
James Franck and Gustav Hertz also showed that the energy of the
electrons in the atom cannot be any and takes only a certain number of
discrete values, which also contradicted classical electrodynamics.
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Linear spectra of hydrogen-like atoms were discovered as early as
1890 (hydrogen-like or one-electron atoms are ionized atoms with one
electron, see section 4.1.2.2). The spectral series of these atoms are
described by the following formula obtained experimentally, namely1𝜆 = 𝑅𝑍 1𝑛 − 1𝑚 , (7.51)

where λmn is the wavelength observed in the spectrum;

m > n are positive integers, not equal to zero, defining the order of the
two allowed energy levels;

R is the Rydberg constant;

Z is the charge of the atomic nucleus.

With this in mind, Bohr supplemented Rutherford's classical
model of the atom in 1913 with the following two postulates, which relied
on the wave-particle duality introduced by Planck and Einstein, and
brought the theory of the atom in line with experiments:

1) there are states of the atom with corresponding discrete energy
values Ɛ1, Ɛ2 , ..., Ɛn, ... , and being in these states, the atom neither radiates
nor absorbs energy;

 2) the atom absorbs and emits intermittently only when it
transitions from one state to another; the frequency ωmn of the emitted or
absorbed radiation at transitions is determined by Planck's formula𝜔 = Ɛ −  Ɛħ , (7.52)

The quantization rule introduced by Bohr, which singles out the
stationary state of the atom, also follows from Planck's formula.
According to Planck's formula, the momentum of the electron

Р = nkħ.
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Since 𝑘 = , and Р = mυ,

then 𝑚 𝜐 = 𝑛 2𝜋𝜆 ħ,
from which 𝑚 𝜐 = 𝑛 2𝜋𝜐𝑇 ħ = 𝑛 2𝜋𝜔2𝜋𝜐 ħ = 𝑛ħ𝑟 ,

Finally

m0υr = nħ (7.53)
The value mυr is the angular momentum, hence, the relation

(7.53) is the condition of momentum quantization. From (7.53) we obtain
that the Bohr radius of the orbit is𝑟 = 𝑛ħ𝑚 𝜐. (7.54)

The velocity υ can be determined according to Rutherford's
model, namely, based on the fact that the centripetal force is equal to the
Coulomb force, i.e. 𝑚 𝜐𝑟 = 𝑍𝑒4𝜋Ɛ 𝑟 . (7.55)

From here 𝜐 = 𝑍𝑒𝑚 4𝜋Ɛ 𝑟 . (7.56)

and 𝑟 = 4𝜋Ɛ 𝑛 ħ𝑍𝑚 𝑒 .
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On the other hand, the total energy of an electron in the field of a
stationary nucleus Ɛ = 𝑚 𝜐2 − 𝑍𝑒4𝜋Ɛ 𝑟. (7.57)

where the second term is the potential energy U𝑈 = 𝐹 𝑑𝑟 = − 𝑍𝑒4𝜋Ɛ 𝑟.
Substitution of υ2 and rn into (7.55) giveƐ = − 1𝑛 ∙ 𝑚 𝑒 𝑍32𝜋 Ɛ ħ . (7.58)

It follows from (7.58) that Bohr's postulates for the spectral series
coincide with formula (7.51) obtained experimentally, provided we
assume that the Rydberg constant𝑅 = 𝑚 𝑒64𝜋 Ɛ 𝑐ħ ≈ 1.097 ∙ 10 𝑚 .

This quantity coincides with the experimental value of the
Rydberg constant with a fairly high accuracy. This means that Bohr's
theory is confirmed experimentally.

The Bohr theory is, nevertheless, semi-classical and fully
deterministic, because it leaves the laws of classical electrodynamics and
mechanics unchanged, only introducing, in accordance with the Planck-
Einstein hypothesis, quantization of electron energy and momentum and
the idea of discrete states in which the electron does not emit and does
not absorb. Based on the hypotheses of Planck and Einstein, Louis de
Broglie in 1923 suggested that Bohr's postulates are a consequence of
wave properties exhibited by particles (see Section 6.6.4) and derive from
a more general physical theory, which was later called quantum theory.
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7.3. From classical physics to quantum theory

The facts considered, which were already discovered at the
beginning of the last century, showed that classical physics was not
applicable to a number of phenomena of interaction between radiation
and matter and to the processes occurring at the microlevels.
Investigations of these facts eventually led to the creation of a new,
quantum physics. Despite the discovered deviations in the behavior of
photons and electrons from classical theory, scientists who studied these
deviations and stood on purely deterministic positions, including Planck,
Einstein, Louis de Broglie, tried to harmonize them with classical theory
by creating a number of new postulates supplementing classical theory.

 Moreover, starting from classical deterministic considerations
(see section 6.4), using the postulate of wave-particle duality (equations
6.29 and 7.1), the relations called subsequently as uncertainty relations
(see section 7.3.1) were obtained. The resulting uncertainties from the
point of view of de Broglie and his school, however, do not indicate any
violation of the principle of determinism, but are purely statistical in
nature.

In other words, they are, according to de Broglie, the consequence
of statistical processes that inevitably arise in observations of
microparticles due to the irreducible interactions of these particles with
the photons of the light beam. De Broglie, in this connection, expressed
the hope as early as the middle of the 20th century that uncertainties serve
only as a measure of the degree of ignorance of microprocesses occurring
at deeper structural microlevels. At the same time, he believed that with
the penetration of science to these levels, these uncertainties would
disappear.

The situation changed considerably in 1927, when the German
physicist Heisenberg obtained the same uncertainty relations not based
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on classical concepts, but solely on the postulated indeterministic
properties that objectively belong to microparticles.

Heisenberg showed that uncertainty ratios characterize a single
particle rather than collectives of particles, as de Broglie believed, and
therefore are not statistical, but objectively natural, arising from internal
properties of the particle. Indeterminism, according to Heisenberg, is
inherent in microparticles as well as all physical bodies from nature.

In other words, indeterminism is the fundamental law of Nature.
It is, however, not observed in macroprocesses due to its exceptionally
small size.

Today, as will be shown later, it is already quite obvious that the
dispute between de Broglie and Heisenberg, which lasted until the 1970s,
was unequivocally resolved in favor of Heisenberg's concept.

7.3.1. Uncertainty Relations

Uncertainty relations are a fundamental law of Nature, underlying
not only quantum theory, but all physics. They are at the same time a
direct consequence of the wave-particle duality of all material formations
without exception.

According to Schrödinger (see Section 6.6.4.1), a free particle can
be assigned a wave function ψ(x), the square of which is determined by
the probability of finding the particle at a point with coordinate x. With
this 𝜓(𝑥 + 𝜆) = 𝜓(𝑥) (7.59)

All functions of the following type are known to have this
property 𝜓(𝑥)~𝑒 (7.60)

Indeed, let us consider the function



31

e jk(x + λ).

It is obvious that𝑒 ( ) = 𝑒 𝑒 = 𝑒 𝑒 = 𝑒
Thus, the state of a free particle with a certain momentum P and

energy Ɛ is described by the de Broglie wave function𝜓(𝑥) = 𝐶𝑒 ħ (7.61)
The square of the modulus of the function ψ(x), as seen from

(7.61), is independent of x, since it is determined by the square of the
amplitude of this function.|𝜓(𝑥)| = |𝐶| 𝑒 ħ = |𝐶|

In other words, a particle with a strictly defined momentum
(energy) is not localized. This means that it can be detected at any point
in space with probability |𝜓(𝑥)| . Such a particle, like a monochromatic
wave with a strictly defined wavelength (frequency), is an idealization
and does not exist in actual reality. The real particle corresponds not to a
monochromatic de Broglie wave, but to a packets of de Broglie waves.
Such an approach does not contradict the initial positions, since the
solution of the Schrödinger wave equation (see Section 6.6.4.1)
corresponds, as is known from mathematics (see Appendix 2), not only
to the function ψ(x) defined by equation (7.61), but also to any
superposition of such functions.

Mathematically the specified superposition is defined by the
Fourier integral (see Appendix 2), which in the limit describes a signal
strictly localized in space. The following relations apply (see formula 6.3)
for this signal Δ𝑘 ⋅ Δ𝑥 ≈ 𝑎Δω ⋅ Δt ≈ 𝑏 (7.62)
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From these relations, in particular, it follows thatΔ𝑘 → ∞ 𝑎𝑛𝑑 Δ𝜔 → ∞Δx → 0 𝑎𝑛𝑑 Δt → 0 (7.63)
The relations (7.63) mean a strict localization of the considered

wave packet in space and time.

From a physical point of view, a particle to which a wave packet
with wavelengths in the ∆k interval and frequencies in the ∆ω interval
corresponds is localized. This is a consequence of the fact that near some
fixed value of x = x0 or t = t0, where the phases of the monochromatic
waves coincide with each other, all the amplitudes add up and give a
resulting amplitude not equal to zero. Away from the values of х = х0 (t
= t0) at |𝑥 − 𝑥 | ≫ 𝜆; |𝑡 − 𝑡 | ≫ 𝑇
the phases of the added waves have a huge difference, the amplitudes
mutually cancel each other out so that the resulting amplitude is on
average equal to zero.

Combining further the equations (7.62 and 7.1), we conclude thatΔP ⋅ Δx ≈ ħΔƐ ⋅ Δt ≈ ħ (7.64)
where ΔP, ΔƐ, Δx and Δt are possible intervals of change of the specified
quantities.

The relations (7.64) were, as mentioned above, called
uncertainty relations. If ΔP, ΔƐ, Δx and Δt are understood as their
standard deviations from the mean values (i.e. the variance of these
waves), then the uncertainty relations (7.64) take the formΔP ⋅ Δx ≥ ħ2ΔƐ ⋅ Δt ≥ ħ2 (7.65)



33

It follows from the uncertainty relations that the more precisely
one of the quantities in an inequality is determined, the less certain is the
value of the other. No experiment can change this situation, since the
uncertainty is not related to the level of perfection of measurement
technique, but to objective, inherent in nature, properties of the particles
under study themselves. It is very important to understand that these
properties are universal and belong to all real-world systems without
exception. However, in the macrocosm dominated by macro-processes,
which are characterized by sufficiently large space-time intervals,
uncertainties remain unnoticed due to their smallness.

In this regard, we are confronted with a completely new reality
that cannot be observed in the macrocosm around us. It was this
circumstance that led to the need for a new physics describing a world
completely different from the one in which we live.

Let us consider the main characteristics of this physical reality.

7.3.1.1. Space-time symmetry
It follows from the uncertainty relations that the postulates about

the homogeneity and isotropy of space-time, considered inviolable in
classical physics, derived from notions of space-time symmetry, are
erroneous and contradict the reality. In fact, physical laws are in direct
correlation with the dimension of space-time intervals, which becomes
more and more evident as we go deeper into matter.

The fundamental, eternal and invariable from the point of view of
classical physics laws of conservation of energy, momentum and angular
momentum, following from the classical notions of homogeneity and
isotropy of space-time, are an idealization of actual reality, and in fact
have no place. For small space-time intervals, as follows from the
uncertainty relations, there are relatively large uncertainties of
momentum and energy, which determine the nature of microprocesses.
For example, intra-atomic electromagnetic processes have a duration of
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the order of 10–16 s. This means that the energy uncertainty for them is of
the order ofΔƐ ≈ ħΔ𝑡 = 1.05 ⋅ 1010 = 1.05 ⋅ 10  𝐽 ≈ 6.6 𝑒𝑉

For intra-atomic processes, this is a fairly significant amount of
energy, sufficient, for example, for the self-excitation of the atom. The
uncertainty energy gives rise to the tunnel effect (see Section 6.6.4.1),
which underlies many microprocesses, including the beta decay of
radioactive nuclei, autoionization of the atom in a strong electric field,
thermonuclear reactions, autoelectronic emission, phenomena in the
contact layer at the boundary of two semiconductors, and a number of
other effects. All these processes, from the point of view of classical
physics, violate the laws of conservation of energy and momentum. These
laws are observed in them only on average, i.e., when the observation
time is long enough.

The tunnel effect, in particular, occurs when the time required for
the particle to jump over the barrier is sufficient for the resulting energy
uncertainty to exceed the height of the barrier. On average, this does not
violate the law of conservation, because the energy of the particle
jumping over the barrier, according to the same uncertainty relations,
decreases over time back to the initial value.

7.3.1.2. Stability of the atom
Another example of the effect of uncertainty relations in the

microcosm is the problem of the stability of the atom. Let us consider this
problem with the example of the hydrogen atom. Let the electron rotate
around a nucleus (proton) along a circular orbit with radius r with
constant velocity υ in accordance with Rutherford's classical model. The
Coulomb force of attraction of the electron to the nucleus, equal to
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𝑒4𝜋𝜀 𝑟  ,
is balanced, according to the second law of dynamics, by the centripetal
force 𝑚 𝜐𝑟 

From here r = 𝑒𝑚 𝜐 4𝜋𝜀 . (7.66)

Thus, if the speed of the electron is large enough, approaching the
speed of light in a vacuum, the radius of its orbit tends to the radius of the
nucleus.

Another reason why the electron must fall on the nucleus is that,
rotating around the nucleus with centripetal acceleration υ 2 / r, it must,
according to classical electrodynamics, continuously radiate and,
therefore, move not along a circular but a spiral orbit, constantly
approaching the nucleus. Substituting the value of velocity from the first
uncertainty relation into the above equation for the electron orbital radius,
we obtain r ≥  16𝜋𝜀 ħ𝑚 𝑒 ≈ 2 ⋅ 10  𝑚.

Thus, the minimum orbital radius of the electron cannot be less
than 2 · 10–10 m. The smallest possible orbital radius is provided in this
case by the second uncertainty relation, according to which during the
motion of the electron along the above orbit one revolution is performed
on average for a time Δt ≈ 4.5 · 10–17 c. This time interval corresponds to
an energy uncertainty of about 7.5 eV, which balances the loss of energy
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that would occur in 1 revolution. As a result, the atom does not radiate,
and the electron remains in orbit.

The uncertainty relations thus allowed us, for the first time, to
estimate the dimensions of the atom, which coincided with the
dimensions obtained with high accuracy from experiments unrelated to
the motion of the electron around the nucleus. They also allowed us to
explain why the atom, contrary to classical laws, is stable, and - to
understand why the electrons, being in a stationary orbit, do not move
toward the nucleus. By the way, already from the uncertainty relations
even before the discovery of the Pauli exclusion principle, which will be
discussed below, it follows that they prevent the convergence of particles
of matter so that these particles do not merge. In other words, for the first
time it was possible to explain that due to the action of uncertainty
relations the discreteness of structures at all levels and the extent of real
systems in the Universe is ensured.

7.4. Fundamentals of Quantum Mechanics

Depending on the field of research, quantum physics is
conventionally divided into three large sections - quantum mechanics,
quantum field theory, and quantum statistics. In addition, it includes
applied sections that reference related fields and use its laws for practical
purposes. Applied quantum physics, in turn, includes quantum
electrodynamics, quantum electronics, quantum optics, quantum
chemistry, quantum energy, etc.

Since all sections are based on the concepts and quantities
established in quantum mechanics, let us first consider its basic
provisions.

Quantum, or otherwise, wave mechanics is a physical theory
that is based on a wave-particle dualism. It studies the laws of motion of
microparticles, including atoms, atomic nuclei, elementary particles, and
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the systems they comprise (e.g., crystals, semiconductors,
superconductors, etc.). Quantum mechanics also studies the relationship
between quantities that characterize these objects and quantities
measured directly in the experiment.

Laws of quantum mechanics, as it was mentioned above, apply in
principle not only to microparticles and their systems, but to all objects
of material world without exception. It follows that classical mechanics
and its laws can be regarded as a particular, limiting case, for which
quantum effects appear so insignificantly that they can usually be
neglected.

On the other hand, since the properties of macroscopic bodies are
the result of averaging of interactions occurring at microlevels, most
macroscopic phenomena find an explanation only within the framework
of quantum mechanics.

Quantum mechanics allowed, for example, to explain the
structure and properties of macromolecules, the properties of solids,
including metals, dielectrics and semiconductors, the phenomenon of
ferromagnetism, superfluidity, superconductivity, a number of optical
phenomena, chemical processes, and so on.

The laws of quantum mechanics underlie many major technical
achievements, including nuclear and thermonuclear energy, the theory
and practice of radiation, materials science, as well as the purposeful
search and creation of new materials with unique properties, etc.

Classical mechanics is characterized by describing the motion of
bodies by specifying their position in space at each moment of time,
which corresponds to their movement along well-defined trajectories.
However, as we already know, such a description does not correspond to
reality and is applicable only when considering bodies of sufficiently
large mass. In quantum mechanics, the motion of bodies is not described
by the equation of motion, but by the Schrödinger wave equation, the
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solutions of which are reduced to finding the wave function of the free
and bound states of particles. As follows from these solutions, the states
of particles at each moment of time are characterized not by their
coordinates and time, but by a set of so-called quantum numbers. The
consequence of this, in particular, is the absence of an orbital bound
electron in the atom. In other words, the notion of moving toward it is
inapplicable. In addition, the electron density of the electron is, by one
law or another, scattered all over the atom. If we apply the classical
concepts, we can talk not about the movement of the electron inside the
atom (rotation around the nucleus), but about the pulsation over time of
its density, or, more precisely, about the pulsation of its probability of
being at a given point at a given time.

Quantum mechanics is divided into relativistic and non-
relativistic mechanics. Since relativistic quantum mechanics is closely
related to field theory, here we limit ourselves to considering only non-
relativistic quantum mechanics.

Non-relativistic quantum mechanics is a semi-classical theory. It
allows a conditional description of the state of particles using classical
concepts - motion, forces, orbits, as well as Rutherford's classical model
of the atom, etc. In this case, the problems of electron motion inside atoms
under the action of central forces are of particular importance. This
approach is called the correspondence principle.

7.4.1. Quantum theory of the hydrogen-like atom

One of the most remarkable successes of quantum mechanics was
the theory of the hydrogen-like atom. This theory is based on Schrödinger
wave equations and is in brilliant consistency with experiment. In
particular, it made it possible to solve the problem of electron motion in
a hydrogen-like atom. Let us first consider this problem for the classical
hydrogen atom. The nucleus of a hydrogen atom consists of one
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positively charged particle. The value of the charge of this particle is
assumed to be 1, and the particle itself is called a proton.

Rutherford's experiments on the scattering of α-particles, which
have already been mentioned above, made it possible to calculate with
great accuracy the ratios between the masses of the proton mp and the
electron me. It turned out that almost all the mass of the hydrogen atom is
concentrated in its nucleus, that is, the proton, so that mp / me = 1836.
Taking this circumstance into account, we will further assume that the
proton is fixed at the center of the atom and connected with a
conditionally stationary reference frame. In this frame of reference the
proton can be seen as a source of a spherically symmetric field, and the
electron as a test charge introduced into this field. In this case, we
consider the proton and electron to be point-like, i.e. we assume that their
interaction occurs according to Coulomb's law. The potential energy of
the electron Up(r) in the Coulomb field is known to beU (r) = − 𝑍𝑒4𝜋𝜀 𝑟. (7.67)

where Z is the charge of the atomic nucleus;

r is the distance between the nucleus and the electron;

e is the charge of the electron.

Graphically, the relation (7.67) has the form shown in Fig. 7.9.,
where Up(r) is the potential energy of the electron, and Ɛ its total energy.
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Figure 7.9

Thus, within the framework of the classical theory, the motion of
the electron bound to the nucleus is finite (see Section 4.1.1.2). The
region r ≤ rmax on the graph corresponds to the condition of bound (finite)
motion of the electron, in which its kinetic energy Wk is less than or equal
to the binding energy |Up|, so that its total energy

Ɛ = Wk – |Up| ≤ 0.

This means that during the finite motion of the electron, the radius
of its orbit r cannot exceed rmax. Indeed, when r > rmax Ɛ > 0, and Wk >
|Up|. Such an electron is detached from the atom and becomes free, and
the atom is ionized.

As can be seen from the graph, the energy spectrum of the electron
in the classical theory at any values of energy is continuous (in Figure 7.9
this state is depicted by shading).

The electron in the potential well of the hydrogen atom behaves
quite differently in the framework of the theory of quantum mechanics.
Its motion in this case is described by the wave function ψ,  which is a
solution of the stationary Schrödinger wave equation. In Section 6.6.4.1,
this problem was considered in the Cartesian coordinate system.
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However, the spherical coordinate system is more convenient. In
this system, the solution of the Schrödinger equation ψ (r,  φ, θ)  can be
represented as the product of three functions ψ1 (r), ψ2’ (φ), and ψ2’’ (θ),
which are called, respectively, radial, azimuthal, and orbital.

This solution is discussed in more detail in Problem 3, Section 7.7.
In this problem it is shown that in addition to the principal quantum
number n (see Section 6.6.4.1), which characterizes the radial function,
the azimuthal function is described by the magnetic quantum number ml,
and the orbital function by the orbital quantum number l. The specified
quantum numbers take integer values.

The quantum number ml is similar to the wave number k in a plane
wave. The azimuthal function characterizes the rotational part of the
electron's motion in the atom, such as the rotation of the electron around
the Oz axis.

Rotational motion is similarly described in classical mechanics.

The vector of angular momentum 𝐿 in classical mechanics, as we
know, 𝐿 = [𝑟 × 𝑃]. (7.68)

The component of this vector on the Oz axis, LZ, describes the
rotational motion around this axis.

Since for a plane wave𝑘 = 𝑃ℏ, (7.69)

then for the magnetic quantum number by analogy𝑚 = 𝐿ℏ . (7.70)
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From relation (7.70), taking into account the perpendicularity of
the velocity vector, and hence the momentum, to the position vector r
(𝑟 ⊥ 𝑃), and also from relation (7.68) it follows that

ΔLi = Δxi · ΔРi, where (i = x, y, z) (7.71)
From (7.71) and the uncertainty relations (7.65) we obtain that

ΔLX · ΔLY · ΔLZ ~ ħ3 (7.72)
Thus, in quantum mechanics it is impossible to set the orbital

angular momentum by exact values of its three projections.

If one of the projections is exact, as follows from (7.72), the other
projections are indeterminate.

It can be shown further (without proof) that, according to
Correlation 4.1 (see Section 7.7), the absolute value of the orbital
momentum Ll can be given by the exact value of any of its projections. In
doing so, it turns out that𝐿 = 𝑙(𝑙 + 1) ⋅ ℏ (7.73)
where l, like other quantum numbers, form a discrete series related to the
principal quantum number by the relation

l = 0, 1, 2, …, (n-1) (7.74)
It also turned out that the orbital and magnetic quantum numbers

are related, namely

ml = 0, ±1, ±2, …, ± l (7.75)
Thus, it follows from the solutions of the Schrödinger equation

that the state of the electron in a hydrogen-like atom is characterized by
the three quantum physical quantities mentioned above, namely:

- energy, which is determined by the quantum number n;

- orbital momentum momentum Ll, which is determined by the
orbital quantum number l;
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- by the projection of this momentum Llz on the Oz axis, which is
determined by the quantum number ml.

In addition to the orbital angular momentum 𝐿 , the electron also
has an intrinsic angular momentum 𝐿 . It is conventionally assumed that
this momentum is caused by the rotation of the electron around the axis,
not related to its orbital motion, and is called the spin momentum. In
principle, a mechanical model of the electron, explaining the emergence
of the orbital and eigenmomentum of its momentum can be the formation
from a solid shell and liquid contents. As such an electron rotates, its
internal content lags behind due to friction.

As in the case of the orbital momentum, the projection of the LSZ

spin momentum can by analogy be given by the quantum relation

LSZ = mS ħ (7.76)
where mS is the quantum magnetic spin number.

The spin number is sometimes referred to simply as spin. The spin
of an electron inside an atom can take only two values, which are
considered antiparallel.

mS = ± 1 / 2. (7.77)
The quantum numbers n, l, ml, and mS form a system that fully

characterizes the state of the electron inside the hydrogen atom and
hydrogen-like atoms.

7.4.1.1. Analysis of the solution of the Schrödinger equation
Let's calculate the number of possible states i of an electron in an

atom, defined by different combinations of quantum numbers. Since for
each value of the principal quantum number n the orbital number l takes
values from j = 0 to j = (n - 1), then
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𝑖 = 𝑙 . (7.78)

On the other hand, for each value of lj the orbital number ml takes
(2 j + 1) values. ml = 0; ± 1; ± 2; and the spin number mS takes two values
mS = ± ½.

It is, in this way,

lj = 2 (2j + 1). (7.79)
Substituting lj from (7.79) into (7.78) gives

𝑖 = 2(2𝑗 + 1). (7.80)

from which

i = 2 [1 + 3 + 5 + … + (2n – 1)]. (7.81)
The expression in square brackets of the last ratio is an arithmetic

progression with the common difference d = 2, so𝑖 = 2 1 + 2𝑛 − 12 ⋅ 𝑛 = 2𝑛 . (7.82)

The energy level Ɛn, which corresponds to a single quantum state
(i = 1) is called non-degenerate (ground state). Levels for which i ≥ 2
are called degenerate. The number of states corresponding to a given
value of n is called the degree of degeneracy. Since each quantum
number n and its energy level Ɛn corresponds to its conditional electron
orbital radius, states with a given quantum number n form electron layers.
The first electron layer closest to the nucleus is denoted by the letter K,
the second by L, the third by M, etc. In each layer there are different states
with different values of the orbital number l.

For the K-layer, n = 1, l = n - 1, and, respectively,

l = 0; ml = 0; mS = 2; i = 2n2 = 2.
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For the L-layer, n = 2 and, respectively,

l = 0; ml = 0, ± 1; mS = 2; i = 2n2 = 8.

For the M-layer, n = 3 and, respectively,

l = 0; ml = 0, ± 1, ± 2; mS = 2; i = 2n2 = 18.

Let us denote, as it is common in quantum mechanics, the states
with a given number l by s, p, d, f, ...-states. It is not difficult to see that
the wave functions corresponding to the s-state with l = 0 are spherically
symmetric. This applies equally to states with any n = 1, 2, ... and l = 0.
These spherically symmetric functions are respectively denoted ψ1S, ψ2S,
ψ1S, ....

Let us consider, for example, the function ψ1S (n = 1, l = 0) . Since
| ψ1S|2 is the value of the probability of detecting an electron at distance r
from the nucleus, the value 4πr2|ψ1S|2 determines the probability of
detecting an electron in a spherical layer of unit thickness located at
distance r. These probabilities are shown in Fig. 7.10а. Fig. 7.10b shows
a spherical layer of radius r. The figure shows that the electrons inside
the atom are distributed in a spherical region surrounding the atomic
nucleus, with the maximum electron density occurring at the Bohr radius
rb. The shaded area on either side of the value of the Bohr radius (Fig.
7.10b) corresponds to the maximum probability of electron detection.
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Figure 7.10.

From Figure 7.11, where the curves of the functions ψjS, we see
that they intersect the r axis (j – 1) times.

Figure 7.11.

Electron shell

Nucleus
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The intersection points correspond to spherical surfaces with
corresponding radius rj. The probability of detecting an electron at these
points is zero. These surfaces are called nodal surfaces. For the 1s-state j
= 0; for the 2s-state j = 1, 3s – j = 2, and so on.

Figure 7.12a shows, respectively, the curves of the dependences
of |ψ2S|2 and 4πr2|ψ2S|2 on r and the electron density distribution.

Figure 7.12.

As can be seen in Figure 7.12 b, electron 2s can be in two spherical
layers, 1 and 2, separated by the nodal surface 4πR2 (dashed line). The 1st
layer of the 2s-state overlaps the layer of the 1s-state (unshaded area near
layer 1). However, the probability of detecting a 2s-electron in layer 2 is
much higher than in layer 1 (see Figure 7.12a). Thus, the size of the atom
in the 2s state is larger than in the 1s state.

The 1s state corresponds to the stationary state of the atom, and
the other states are 2s, 3s, ... are corresponding to excited states. They are
all spherically symmetric and differ from each other in the degree of
excitation and the number of nodal surfaces. Since the 1s-state is
stationary, i.e. Δt → ∞ , then, according to the uncertainty relation, ΔƐ →
0 . It follows that a stationary state corresponds to a well-defined energy
level and the classical deterministic behavior of the atom, as well as the

R is the radius of the nodal surface
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observance in it of the laws of conservation of energy and momentum.
The energy level Ɛ1 is infinitely subtle. On the contrary, the energy levels
of excited states Ɛ2, Ɛ3, ... are blurred. For them, during the time Δτi the
electron stays at the excitation level, Ɛi ≈ ħ / Δτi.

In the p, d, f... - states of the electron, for which l ≠ 0, its detection
probability is determined not only by the distance of the corresponding
layer to the nucleus, but also by the angles θ and φ. Solutions of the
Schrödinger wave equation lose their spherical symmetry in this case. At
the same time, the electron density distribution and the shape of the
electron cloud change. Thus, for example, analysis of the solution of the
equation for l = 1 (states) shows that these solutions are also symmetric
about the corresponding coordinate axes, but in the form of dumbbells.
They are also characterized by the number (n - 2) of nodal surfaces.
Figure 7.13a shows dependence plots of the 2p and 3p states, as well as
electron density distribution diagrams of the 2p state (7.13b), for which
(l = 1) and m = 0, ± 1.

Figure 7.13.
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It is interesting to note that the total distribution function
describing the probability of detecting an electron in any of the 2p states
is spherically symmetric. In the nitrogen atom, for example, Z = 7. There
are only 7 electrons in the electron shells of this atom, including 2 of them
placed in the K-layer, in the 1s2 state (l = 0; ml = 0; mS = 2) . Five electrons
are placed in the next M-layer. Two electrons are in the 2s2 state (l = 0;
ml = 0; mS = 2), and three are in the 2p3 state (ml = 0; ± 1).

Symbolically, the states of the nitrogen atom are therefore written
in the form

1s2 2s2 2p3 (7.83)
The 1s2 and 2s2 states are spherically symmetric by definition, and

the 2p3 state is spherically symmetric because it contains all 3 2p states,
so the nitrogen atom as a whole is spherically symmetric. The wave
function in the d-state (l = 2) has (n - 3) nodal surfaces and is similar in
configuration to the p-state. It has a higher degree of symmetry, and the
electron density distribution also has the form of a four-lobed rosette. For
example, in the d-state, where there are no nodal surfaces yet, and ml = 0;
± 1; ± 2, the electron density has the following distributions (Fig. 7.14).

Figure 7.14

The quantum state of the total distribution function at the position
of all five d-states is the same as in the case of p-states, it is spherically
symmetric. For example, a manganese atom (Z = 25) contains a
spherically symmetric inner K-shell (2 electrons), a spherically
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symmetric L-shell (8 electrons), all 5 spherically symmetric d-states (5
electrons) and 2 spherically symmetric s-states (2 electrons - outer shell).
It follows that the wave function of the manganese atom is generally
spherically symmetric.

When an atom has fewer than three p-states or fewer than five d-
states, and each p- or d-state has more than two electrons, it is not
spherically symmetric, but is stretched in one direction or another.

The electron density distribution in f, g, and other states can be
represented similarly.

7.4.2. Systems with a large number of particles

The exact solution of the Schrödinger equation for a system with
a large number of particles, such as a multielectron atom, is associated
with serious mathematical difficulties. Therefore, the solution of such a
problem is simplified by applying a number of physically justified
assumptions with a sufficiently high approximation. These assumptions
follow from an analysis of the properties of microparticles based on
general considerations and reliable observations.

7.4.2.1. Principle of Identity
The principle of identity is a purely quantum effect arising from

quantum-mechanical consideration of properties of microparticles. In
classical mechanics, as we know, all bodies, including microparticles, are
considered as corpuscular entities, which are strictly localized in space at
any given moment of time in the chosen frame of reference, characterized
by the exact value of the coordinate, and their motion is described by
well-defined paths. Therefore, absolutely identical particles (for example,
two electrons) are fundamentally different in their location in space-time.
In quantum mechanics, the state of particles is described by a wave
function, which can only be used to determine the probability of their
location. For example, let particle 1 move relative to some reference
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frame and collide with particle 2 stationary relative to this frame. From
the point of view of classical mechanics, if the velocity and direction of
motion of particle 1 are known, then it is possible to determine how the
trajectories of particles 1 and 2 will change after their collision and to
distinguish particle 1 from particle 2 by these trajectories. From the point
of view of quantum mechanics, particles have no trajectory and changing
their location cannot be experimentally detected. This statement is the
principle of identity of quantum mechanics.

Let us consider a system of two particles. Let the first particle be
described by the wave function ψ1 (q1) and the second particle by ψ2 (q2).
Arguments of functions q1 and q2 are generalized coordinates
characterizing quantum numbers n, l, ml, mS. Let ψ1 (q1, q2) be the wave
function describing a two-particle system in which the first particle is in
state 1 and the second is in state 2. It follows from the principle of identity
that

|ψ1 (q1, q2)|2 = |ψ1 (q2, q1)|2

From here

ψ1 (q1, q2) = ± ψ1 (q2, q1) (7.84)
A wave function that satisfies the first condition, i.e., the equation

(7.84) with plus sign, is called an even symmetry function. A wave
function that satisfies the second condition, i.e., the equation (7.84) with
a minus sign, is called an odd symmetry function.

The parity property of symmetry is a characteristic feature of this
kind of particles. If the wave function of a particle has odd symmetry,
then any 2 such particles cannot be in the same states. On the contrary, if
the wave function of a particle has even symmetry, then any number of
them can be in the same state. The number of non-interacting particles
that are in the same state with the same set of quantum numbers under
given conditions is called the occupation number. Thus, the occupation
numbers for particles with even symmetry can only take values 0 and 1.
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The rule that forbids particles with odd symmetry to be in the
same state is called the Pauli exclusion principle.

7.4.2.2. Relation between parity and spin of particles
Earlier it was mentioned that in quantum mechanics the electron

is attributed with its own angular momentum. This angular momentum
only provisionally characterizes the motion of the particle. In fact, it has
a purely quantum character and is not related to its displacement. The
concept of electron eigenmomentum was introduced into physics based
on the analysis of its spectroscopic data in 1925 by American scientists
George Eugene Uhlenbeck and Samuel Abraham Goudsmit. They
interpreted this moment as the result of the rotation of the electron around
the axis like a spinning top. Hence the name of this new quantum
characteristic, spin, which means to rotate, to spin.

Spin was introduced into the mathematical apparatus of quantum
mechanics in 1927 by the Austrian physicist Wolfgang Ernst Pauli, with
the so-called Pauli equation. This equation is a generalization of the
Schrödinger equation for the electron, which takes into account its spin.
In 1928 Paul Dirac derived the Pauli equation from the general relativistic
electron equation as its particular non-relativistic approximation.
Subsequently, it was found that all particles, both simple and complex,
have spin. Spin is detected by observing the spectra of particles by their
so-called fine structure. The latter is a consequence of the interaction of
the magnetic field of the eigenmomentum (spin) of particles with the
magnetic field of their orbital moment. For the first time the fine
structure, i.e. splitting of energy levels, was observed by the Dutch
physicist Pieter Zeeman back in 1896 (Zeeman effect) when studying the
glow of sodium vapor in a magnetic field. The Zeeman effect consists in
the fact that under the action of a magnetic field, three lines (triplets) are
observed in the radiation spectra of atoms instead of one spectral line in
the direction perpendicular to the magnetic field strength. In more
complex cases, doublets (two lines) and multiplets (more than three lines)
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are also observed. The Zeeman effect is explained by the interaction of
the magnetic moment arising in a quantum system under the action of an
external magnetic field with the magnetic moment of the atom. The
number of splitting lines is determined by the degree of energy level
degeneracy. The fine structure of particles is considered conventionally
as a result of the interaction of the magnetic field of the orbital momentum
of the Coulomb rotation of a particle (electron) around the nucleus with
the magnetic field of its own momentum (spin). This interaction leads to
the formation of an energy addition that splits the energy levels. The
intrinsic momentum of the particles is similar to the orbital momentum
and obeys the same relations (see 7.71, 7.74). This means that one of the
projections of the eigenmomentum is also quantized, i.e.

LCZ = mS ħ (7.85)
where LCZ is the projection of the eigenmomentum on the Oz axis;

mS is the spin quantum number.

In addition, the absolute value of the eigenmomentum

LC = ħ2 mS (mS + 1) (7.86)
The number of values the eigenmomentum projection can take, as

in the case of the orbital momentum,

kS = (2mS + 1) (7.87)
where k is the multiplicity of spin momentum degeneracy.

It turned out that the value of kS takes on values of arbitrary
integers and zero

kS = 0; ± 1; ± 2 (7.88)
From relation (7.87) it follows, therefore, that for odd values of k

the spin mS is zero or an integer, and for even values it is a half integer ±
1 / 2, ± 3 / 2, ± 5 / 2, etc. In the particular case of the electron𝑚 = ± 12 (7.89)
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Particles are only conventionally regarded as spinning tops. A
more clear and close to reality representation of spin is given by
information related to particle symmetry (Fig. 7.15)

Figure 7.15.

A particle with spin equal to zero resembles a point with all-round
(absolute) symmetry in this sense, because it looks the same from all
sides. A particle with spin 1 can be compared to a one-sided arrow, which
looks different from different sides. However, if you rotate it 360º, it will
look the same. A particle with spin 2 can be compared with a symmetrical
double-sided arrow. It takes on its former appearance if you turn it 180º.
Particles with higher integer spin take on the same appearance when
rotated to even smaller angles, for example, if mS = 3, to an angle of 90º,
etc. However, there are also such particles which do not possess the above
symmetry, since when they are completely rotated by 360º they do not
take their former form. This happens only if they are rotated by 360º
twice, which is connected with a half-integer value of spin of these
particles.

Thus, all known particles in the Universe can be divided into two
groups:

 - particles whose wave function is odd; they have half-integer
spin; they are fermions that form atomic matter; they include the
following particles and their antiparticles - electrons, nucleons, quarks,
neutrinos. They also include complex particles formed by an odd number
of fermions; fermions are subject to the Pauli exclusion principle;
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 - particles whose wave function is even; they have integer or zero
spin; these are bosons that carry interactions and do not obey the Pauli
exclusion principle; they include photons, gluons, vector bosons,
gravitons, mesons, and complex particles composed of an even number
of fermions. The connection between parity and spin was first established
in 1940 by Pauli.

7.4.3. Periodic Trends of the Structure of the Atom

The periodic trends was discovered by the Russian chemist Dmitri
Mendeleev. It turned out that if the simplest one-atom chemical
substances (elements) are arranged in order of increasing their atomic
masses, then after a certain number of elements that form an interval or
period, there is a repetition of their chemical and physical properties. If
the elements with similar properties are arranged in ascending order of
their atomic masses one below the other in vertical columns, all elements
form eight such columns. These columns were called groups and
designated by Roman numerals from I to VIII. The first group included
hydrogen and the single-valent metals of the alkaline series (H, Li, Na,
K, Rb, Cs, Fr). The second group included the divalent metals of the
alkaline-earth series (Be, Mg, Ca, Sr, Ba, Ra), etc. As we move from one
group to another in each period, the valence increases and the chemical
activity decreases, and the metallic properties are gradually replaced by
non-metallic ones. Elements with clearly expressed non-metallic
properties are located in groups IV - VIII. From group IV to VIII the
valence decreases from 4 to 0, the non-metallic properties and chemical
activity increase and reach their maximum in the elements of group VIII,
the so-called halogens. Group VIII is formed by inert gases with zero
valence and chemical activity.

As a result, all the elements are arranged so that they form a
rectangular table called the Periodic Table. Horizontal rows of the
Periodic table create periods. Each period accommodates elements with
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different, gradually changing properties. Each period except the first
begins with a single-valent, highly reactive metal and ends with an inert
gas. The first period includes only two elements, H and He. The second
and third periods include 8 elements each from Li to Ne and from Na to
Ar, respectively. The fourth and fifth periods include 18 elements each.
The fourth period begins with K and ends with Kr, and the fifth with Rb
and Xe. The sixth period includes 32 elements from Cs to Rn, and the
seventh, incomplete period, includes only 19 elements. It begins with Fr
and ends with the last relatively stable 105 element of the table, Db
(Dubnium).

Let us consider how the periodic trends relate to the charge of the
nucleus and the orderly arrangement of the electrons within each atom.
First, let us point out that all elements are arranged in the Periodic table
not as their atomic mass increases, as Mendeleev believed, but as their
nucleus charge increases, i.e., the number of protons in the nucleus and
the number of electrons in the atom corresponding to them. In addition to
protons, neutrons are also found in the nucleus, which do not affect its
charge. The mass of the neutron is almost the same as that of the proton.
The number of neutrons in light and medium nuclei is approximately
equal to the number of protons, and in heavy nuclei there are considerably
more of them. The mass of atoms increases with the charge of the nucleus,
but the periodic trends and the dependence on mass are observed only
approximately and have many exceptions. The periodic law is completely
conditioned by the Pauli exclusion principle.

Let's call electrons with the same values of the principal quantum
number n equivalent. The degree of degeneration of atoms with the same
numbers n is known to be

2 (2l + 1)

The number of equivalent electrons with a given value of l forms,
as mentioned above, electron shells, which are denoted respectively by
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s(l = 0); p(l = 1); d(l = 2); f(l = 3), etc. The number of electrons located
on the electron shell is indicated on the top right with an Arabic numeral.
For example,

 s means that 1 electron is located in the s-shell,

 s2 means that there are 2 electrons,

 p3 means that there are 3 electrons on the p-shell, etc.

Each shell can accommodate a limited number of electrons,
namely:

 on the s shell - 2 electrons;

 on the p shell - 6 electrons;

 on the d shell - 10 electrons;

 on the f shell - 14 electrons, etc.

Shells containing the specified number of electrons are called
completely filled shells. Thus, s2, р6, d10, f14, etc. - are the designations of
completely filled shells. It is obvious that there can be no shells
designated, for example, s3, p8, or f16, etc.

Equivalent electrons are located in the corresponding electron
layers, which are denoted by К(n = 1); L(n = 2); М(n = 3); N(n = 4), etc.

Each layer can contain a maximum number of electrons equal, as
mentioned above, to 2n2. Layers containing the maximum possible
number of electrons are called completely filled layers. The value of the
principal quantum number is usually indicated before the shell
designation (see Table 7.1).
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Table 7.1.

Shells Layers
Designation Number of

electrons of a
completely
filled shell

K L M N
n =1;
l =0

n =1;2,
l = 0;1

n = 1;2;3,
l = 0;1;2

n=1;2;3;4,
l=0;1;2;3

s 2 1s -1s2 1s-1s2;
2s-2s2

1s-1s2;
2s-2s2;
3s-3s2.

1s-1s2; 2s-
2s2

3s-3s2; 4s-
4s2

p 6 - 2p-2p6 2p-2p6;
3p-3p6

2p-2p6; 3p-
3p6;

4p- 4p6

d 10 - - 3d-3d10 3d-3d10;
4d-4d10

f 14 - - - 4f-4f14

… … - - - -
Number of electrons of
completely filled layers

2 8 18 32

The K-layer is closest to the nucleus. It is followed by L, M, N,
...layers in order. The bonding strength of an electron in an atom
decreases with the distance of the layer from the nucleus, i.e., with an
increase in the quantum number n.

The shells within each given layer move away from the nucleus
as l increases, so the bonding strength of the electron with the nucleus
within the layer decreases with increasing distance of the shell

For example, the electrons in the M-layer are weaker bound to the
nucleus than in the K-layer, and the electrons in the d-shell of the M-layer
are weaker bound to the nucleus than the electrons in the s and p shells of
that layer. The last shells of the last layer are called outer shells. The
electrons of unfilled outer shells are weakerly bound to the nucleus than
the electrons of filled shells, and the smaller the filling of the last shell,
the weaker this bond. Weakly bound electrons of the outer shells easily
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separate from their atoms, fill the interatomic space and form the so-
called electron gas.

Outer shells containing more than 3-4 electrons are stable. Their
electrons are being bound near the nucleus. Such shells easily attach to
themselves the electrons that are missing to fill them completely. The
filling of energy levels by electrons occurs so that the levels with the
lowest possible energy are filled first, then the higher levels, and so on.
As a result, all energy levels in the ground state of the system will be
filled, from the lowest level to the highest possible level. Higher levels
are left vacant. If an electron moves from a filled level to a free (vacant)
level, this is regarded as the birth of a particle-hole pair. If an electron
returns to the region of filled levels, filling a hole, this is considered
recombination, i.e., the disappearance of the pair or annihilation.

Since annihilation sharply increases the electron's bonding to the
filled level region, there is a release of bonding energy (mass defect).
Energy is emitted by the field quanta of a given particle.

An atom whose electron shells are unfilled or partially filled forms
a positively charged ion. As the shells fill, the ion charge decreases. Each
ion corresponds to a different filling order designation.

An example of filling electron shells for the atoms of nitrogen and
phosphorus is shown in Table 7.2 on the next page.

Sometimes the filling of the shells is intermittent, which consists
in the fact that there are processes associated with disturbances in the
distribution of energy. For example, after filling the 3p state of the M-
layer in argon, the K-layer fills not the 3d state of the same layer, but the
4s state of the next layer, which is energetically more advantageous.
Electrons with a lower l but higher n are more strongly bonded than
electrons with a higher l but lower n (e.g.,  electrons of the 4s state are
more strongly bonded than those of the 3d state). This leads, among other
things, to groups of elements, lanthanides and actinides. Most of the



60

properties of the atom are determined by the structure and characteristics
of the outer shell electrons. The binding energy of these electrons is
relatively low and ranges from a few eV to several tens of eV. For
comparison, the binding energy of internal electrons is 102 -  104 eV.
Electrons of outer shells participate in emission processes in the optical
and thermal range of frequencies (ultraviolet, visible and infrared
radiation), in chemical reactions, creation of intermolecular bonds. It is
these that determine the electrical and magnetic properties of elements
and substances. The magnetic moments of atoms with completely filled
shells are usually zero, while the magnetic moments of atoms with
partially filled outer shells determine the para- and diamagnetic
properties of matter.
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The dependence of the properties of atoms on the binding energy
of the electrons of their outer shells leads to the fact that they change
dramatically during their ionization, as well as during the formation of
chemical compounds in which the electrons of the outer shells create
ionic or covalent bonds. For example, the properties of the water
molecule H2O have nothing in common with the properties of hydrogen
and oxygen atoms. On the contrary, the electrons of the inner shells of
atoms have almost no effect on their properties.

7.4.4. Structure of energy levels

When considering the periodic trends and constructing the
Periodic table, it was assumed that each electron in a multi-electron atom
behaves independently of the other electrons, interacting only with their
total average electrostatic field and the nucleus. The sets of states for a
given electron were determined by the values of the principal quantum
number and the corresponding mechanical momenta, orbital and spin.
This approach did not take into account the spin-orbit interaction, the
interaction of electrons with the magnetic field of the nucleus, etc. With
this approach, the radiation spectra of atoms were represented as a set of
spectral lines, which reflected only the discrete energy levels of the atom
and the corresponding transitions of electrons from excited to ground
states. In reality, the influence of unaccounted factors leads to a change
in the specified approximation of the spectral pattern. These changes
manifest themselves as a splitting of the lines of the main spectrum, which
is called a fine and in some cases hyperfine structure.

7.4.4.1. Selection rules
The thin and hyperfine structure of the spectrum of the atom is

thus a consequence of a number of factors not taken into account in the
approximate spectral scheme. Let us first consider the fine structure
caused by the spin-orbit interaction. For this purpose, let us introduce the
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vector of the total momentum М⃗. It can obviously be found from the
equality 𝑀 = 𝐿 + 𝐿 (7.90)
where 𝐿  is the total orbital momentum of the electrons of the atom;𝐿  is the total spin angular momentum of these electrons.

The projection of the total momentum to some direction Oz is
determined, as usual, by the quantization condition

MZj = mljs ħ (7.91)
where mljs is the magnetic quantum number of the projection of the total
momentum;

The value of the total momentum in view of (7.91) is determined
from the relation 𝑀 = ℏ 𝑙 (𝑙 + 1) (7.92)

where ljs is the orbital quantum number of the total momentum.

M is the absolute value of the total mechanical moment

Obviously, for each electron𝑙 = 𝑙 ± 12 , 𝑙 = 0, 1, 2, … (𝑛 − 1)  𝑚 = 𝑚 + 𝑚 = 𝑚 ± 12 (7.93)

Since only positive values of orbital quantum numbers correspond
to energy levels, we obtain from relation (7.93) that at𝑙 = 0, 𝑙 =  12 ;   𝑙 = 1, 𝑙 = 12 , 32 ;   𝑙 = 2, 𝑙 = 32 , 52 (7.94)

Equation (7.94) shows that the same non-zero value of the orbital
quantum number corresponds to two values of ljS.



65

This means that each level, defined by a non-zero orbital number,
splits into three sublevels. This determines the fine structure
characterized by multiplet

t = (2 LS + 1). (7.95)
It should also be borne in mind that each total mechanical moment

corresponds to its own magnetic moment.

The fine structure for transitions from level l = 1 to level l = 0 is
shown in Figure 7.16.

Figure 7.16

Figure 7.16 shows that transitions from level l = 1 to the non-
dissociated level S1/2 (l = 0) correspond to a doublet of two close states
Р3/2 (ljs = 3 / 2); P1/2 (ljs = 1 / 2).

For example, for the sodium atom n = 3 and l = 0, 1, 2, the inner
layers K and L are completely filled, and the layer M contains 1 electron.
The excitation levels of this electron are vacant. Since n = 3, l = 2 and𝑙 = 2 ± .

The energy structure of the sodium atom is written as

1s2 2s2 2р6 3d1

The D level splits into two sublevels, D5/2 and D3/2, and forms a
duplet of yellow lines with wavelengths of 589 and 589.6 Ǻ.
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The effect of the emergence of a fine structure in the absence of
an external magnetic field is called the internal Zeeman effect.

In addition to the fine structure, the spectra of atoms also exhibit
a hyperfine structure caused by the interaction of the magnetic moment
of the electron with the weak magnetic field of the atomic nucleus.

In light and medium atoms, where the spin-orbit interaction is
small compared to the electrostatic interaction, the orbital and spin
moments of individual electrons add up to each other. In this case,
multielectron atoms can be considered as one-electron atoms with one
total orbital 𝐿  and one spin momentum 𝐿 , for which𝐿 = 𝐿   

𝐿 = 𝐿 ⎭⎪⎬
⎪⎫

(7.96)

If the inner shells are completely filled and their moments are
compensated, then we are limited to considering only the outer shell
electrons (valence electrons). If the number of valence electrons is even,
their total spin quantum number is an integer; if the number is odd, it is
half an integer.

In the central electric (Coulomb) field, electrons conditionally
rotate around the nucleus and their total moments 𝐿  and 𝐿 , while
remaining constant in magnitude, continuously change their orientation
(direction). The vector of the resulting total momentum 𝑀 is preserved in
both magnitude and direction. This pattern corresponds to the rotation of
the vectors 𝐿  and 𝐿  with angular velocity ω around the vector 𝑀.

If the spin-orbit interaction is large compared to the electrostatic
interaction of electrons with each other, for example, in heavy atoms, then
the relation (7.96) is not satisfied. In this case, the following takes place
for each i-th electron
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𝑀 = 𝐿 + 𝐿𝑀 = 𝑀 (7.97)

The state of an atom is determined not only by the total
momentum 𝑀 , but also by each momentum 𝑀  and its corresponding
quantum number.

When an electron of a complex atom transitions from one state to
another, it can emit or absorb a quantum of electromagnetic energy.

If there are transitions of external electrons, there is radiation in
the optical spectrum. Transitions of internal electrons emit radiation in
the X-ray spectrum.

Let us consider, for simplicity, single-photon processes. This
approach is acceptable because multiphoton processes are unlikely. If 𝑀
is the total angular momentum of the electron (electrons) before the
radiation, 𝑀  is the total angular momentum after the radiation, and 𝑆′⃗
is the vector of the photon's own angular momentum, then according to
the law of conservation of angular momentum (the photon has no orbital
momentum), 𝑀 = 𝑀 + 𝑆′ (7.98)

The spin of the photon is known to be 1. If we also assume that at
the initial moment 𝑀 = 0, then 𝑀 = 1 (7.99)𝑀 = 0, then 𝑀 = 1 (7.100)

In other words, if in the initial or final state one of the momenta𝑀  or 𝑀  is zero, then the possible transitions in the emission and
absorption of a photon are only those at which

ΔM = |MB – ME| (7.101)
Transitions from MB = 0 to ME = 0 are forbidden.
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In the first case, when the vectors 𝑀 ≠ 0 and 𝑀 ≠ 0 and are
directed along the same line, they must have the opposite orientation.
Otherwise, 𝑆′⃗ ≤ 0, which contradicts the original assumption. In the
second case, when vectors 𝑀  and 𝑀  are directed at an angle, the vector
equality (7.98) can be realized only if 𝑀 = 𝑀 = 1  (see Figure
7.17). In this case, the value of Δ𝑀 = 0.

Figure 7.17

If 𝑀 = − 𝑀  (opposite orientation), then Δ𝑀 = ±1 . All
other transitions are forbidden.

Thus, summarizing the above, we obtain for the absolute values
of momentaΔ𝑀 = ±1; 0 𝑎𝑡 𝑀 ≠ 0 𝑜𝑟 𝑀 ≠ 0Δ𝑀 = ±1 𝑎𝑡 𝑀 = 0 𝑜𝑟 𝑀 = 0Δ𝑚 = 1; 0 (7.102)

The equations (7.102) are called the selection rule. The emission
of light is possible either as a result of a change in orbital momentum 𝐿 ,
or as a result of rotation 𝐿 , or both, for example, by the interaction of a
photon with the magnetic moment of an atom. However, when emitting
in the optical spectrum, this interaction is much smaller than the
interaction of the photon with the charge of the electron, causing a change
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in 𝐿 . In this case we can assume that 𝐿 = 0. Therefore, the selection
rules can be rewritten as followsΔ𝐿 = 0; ±1   𝑎𝑡 𝐿 ≠ 0 𝑜𝑟 𝐿 ≠ 0Δ𝐿 = ±1       𝑎𝑡 𝐿 = 0 𝑜𝑟 𝐿 = 0Δ𝑚 = 0; ±1 (7.103)

7.4.4.2. Optical emission spectra
The energy levels of the electron shells of multi-electron atoms

have a very complex structure. Accordingly, their optical spectra are just
as complex. For example, in the spectra of heavy atoms, a huge number
of spectral lines appear, the number of which is measured in tens of
thousands. However, the processes occurring in the absence of external
excitations in the inner electron shells may not be considered, since they
are mutually compensated and do not lead to any macro phenomena. This
greatly simplifies the theoretical analysis of the optical spectra of multi-
electron atoms.

The states of multi-electron atoms, as well as of the hydrogen
atom (and all hydrogen-like atoms) will be denoted by the same, but with
capital letters of the Latin alphabet. For example, the state of a hydrogen
atom at l = 0 is denoted by the letter s, and the state of a multi-electron
atom at Ll = l1 + l2 + ... = 0 is denoted by the letter S. The state of the
hydrogen atom at l = 1 is denoted by the letter p, and the state of the multi-
electron atom at Ll = l1 + l2 + ... = 1 is denoted by the letter P. Here l1, l2,
l3 ... are the orbital momenta of the outer electrons. The number of
possible values of the total momentum, N = 2 Ll + 1, and the multiplets,
i.e., the number of lines into which the main line splits, is t = 2LS + 1.

When the state of a multi-electron atom is designated, the main
letter has two indices - the lower right indicates the total moment M, the
upper left indicates the multiplet. Sometimes the principal quantum
number of the atom is also indicated ahead of this designation.
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Let us first consider the optical spectra of radiation arising from
transitions of outer shell electrons on the example of two-electron atoms,
i.e., atoms of helium and helium-like particles.

In the ground state of the helium (helium-like) atom n = 1,
l1 = l2 = l = 0, and the spins of both electrons are antiparallel according to
the Pauli exclusion principle, i.e.𝑚 = + 12 ;   𝑚 = − 12

Both electrons are at the 1s level.

Therefore, 𝐿 = 𝑚 + 𝑚 = + 12 − 12 = 0
Ll = l1 + l2 = 0,

so

M = 0; t = 1.

The ground state of the atom corresponds, therefore, as we can
see, to the unsplit (single, singlet) level.

This condition can be summarized as follows

1 1S0.

In the excited state, one electron is usually in the ground state 1s,
and the second electron goes to one of the possible excited states. Since
both electrons are in different states, their spins can be either antiparallel
or parallel. In the first case LS = 0, and in the second case LS = 1. These
states are shown in Figure 7.18 (a and b) respectively.
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Figure 7.18.

If one of the electrons of an atom is not at the 1S level, its spin
can be oriented either parallel or anti-parallel to the spin of the second
electron. At antiparallel orientation, as in the previous case S =  0  ,  the
level is single (singlet) (see Figure 7.18)

The first state (see Figure 7.18a) is called parahelium, the second
(see Figure 7.18b) is called orthohelium. Possible states of excitement
of the parahelium will be:

2 1S0 (n = 2; l1 = 0; l2 = 0; Ll = 0, LS = 0; M = 0);

2 1P1 (n = 2; l1 = 0; l2 = 1; Ll = 1; LS = 0; M = 1)

3 1S0 (n = 3; l1 = 0; l2 = 0; Ll = 0, LS = 0; M = 0);

3 1P1 (n = 3; l1 = 0; l2 = 1; Ll = 1; LS = 0; M = 1)

3 1D2 (n = 3; l1 = 0; l2 = 2; Ll = 2; LS = 0; M = 2) и т.д.

All parahelium levels are singlet, because t = 1 for them. For
orthohelium, the spins of both electrons are parallel, the spin momentum
is equal to 𝑆 = + = 1 , and t =  3,  i.e.  all  lines  form  triplets.  In
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orthohelium, the second electron cannot be in the 1s state, since the first
electron is already there.

Therefore, according to the Pauli principle, the state 1 3S1 when S'
= 1; L = 0, and M = 1 is excluded.

If the second electron is at the 2s level, the 2 3S1 state occurs,
which has the lowest possible energy and corresponds to the ground state
of orthohelium.

If the second electron is at the 2p level, then L = 1 and M = 0, 1,
2 . Three triplet levels correspond to this state: 2 3P0; 2 3P1, and 2 3P2, etc.
(see Figure 7.18b).

The spectra of atoms are also influenced by external fields. For
example, the superposition of external electric and magnetic fields leads
to a shift and splitting of spectral lines of energy levels, the appearance
of a thin and hyperfine structure.

In this case, the states characterized by the same quantum
numbers may differ in their magnetic moment projections to the direction
of the magnetic field.

Optical spectra have very important practical applications.
Qualitative and quantitative spectral analyses are the most important
among them. Qualitative spectral analysis makes it possible to determine
with high precision the chemical composition of the substance, the
presence and chemical composition of even minor inclusions. With
qualitative analysis, minor inclusions up to 10–13 kg can be detected.
Quantitative analysis allows us to determine the concentration of the
substance under study by the brightness of the spectral lines of its atoms.
The sensitivity of the method is quite high.

Observation of spectra and spectral analysis is performed in the
gaseous (glowing) state of the substance, in which there are no
intermolecular and interatomic bonds.
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7.4.4.3. X-ray spectra
X-rays are produced by bombarding solids with a stream of fast

electrons in a vacuum X-ray tube. Colliding with the anode, which is
made of a working substance, the electrons are dramatically decelerated
and the resulting energy excites the electrons of the inner shells of the
target atoms, which leads to their emission. Since the energy of the
inhibited decelerated has a continuous distribution in a given interval, the
spectrum of X-rays is continuous. The frequencies of this radiation are
determined from the ratio

Ɛ1 – Ɛ2 = ħυ, (7.104)
where Ɛ1 is the initial energy of the electrons;

Ɛ2 is the energy arising in the process of deceleration of electrons.

Linear spectra of the so-called characteristic rays also appear on
the background of the solid spectrum of the braking radiation.

It appears as a result of transitions of upper electrons to vacated
internal levels.

Accordingly, K, L, M, etc. series of characteristic radiation can be
distinguished.

Spin-orbital moments and their interactions are small compared
to the huge excitation energy of the characteristic radiation and, therefore,
there is almost no fine structure of the radiation here.

As early as 1913, Moseley established an empirical law linking
the frequency of the lines of characteristic radiation with the charge of
the nucleus Z, according to which√𝜐 = 𝑐(𝑍 − 𝜎) (7.105)
where c and σ are empirical constants.

Moseley's Law, in particular, is used in X-ray analysis. It is
important to note that the results of this analysis do not depend on the
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aggregate state of the substance, since the intermolecular interactions are
mainly concentrated in the upper electron shells.

7.4.5 Fundamentals of quantum radiation theory

The classical theory of electromagnetic wave radiation is
sufficiently described in Maxwell's electromagnetic field theory. In
particular, it proves that the electromagnetic field has the property of self-
sustaining and exists independently of the sources that excited it (see
Sections 4.2.3 and 6.5.7). According to quantum theory, it is believed that
radiation is caused by photons arising from the transition of a quantum
system from an excited state with high energy to an unexcited state with
less energy. In the reverse process, photons are absorbed and disappear
because they cannot exist at rest, where their mass is zero.

Problems related to emission or absorption of photons in quantum
theory are solved using the Schrödinger equation. However, the exact
solution of this equation is possible only for the simplest systems. In the
study of real-world problems, approximate methods are used. The most
common among them is the so-called perturbation method.

This method consists in solving the Schrödinger equation for an
unperturbed system in the first step. In the second step, the corrections
due to small perturbations are calculated. Calculations of changes in
quantum states show that the probability of transitions that cause
radiation is proportional to the energy density of the electric field. The
probability maximum arises at

ω = ωmn, (7.106)
which has the character of resonance.

Thus, an electromagnetic wave causes an electron to move from
level m to level n at a frequency of

ω = ωmn, (7.107)
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for which the value of𝜔 ≈ 𝑈 − 𝑈ℏ (7.108)

The probability of the reverse transition is equal to the probability
of the forward transition, i.e.

pmn = pnm, (7.109)
The calculated formula for the specified probability, obtained by

the perturbation method, is (we will accept it without proof)

𝑝 = 𝐸 𝑒 |𝑧 | sin 𝜔 − 𝜔2 𝑡ℏ (𝜔 − 𝜔) (7.110)

Where E0 is the amplitude of the intensity of a plane monochromatic
wave linearly polarized along the z-axis with length λ and frequency ω;

e is the value of the elementary charge;

e|zmn| is the average dipole moment of transition from m to n.

Forced transitions can occur both by absorbing the energy of the
above field with its transition to a higher energy state and by giving
energy to the field with its transition to a lower energy state.

Let a volume have a large number of atoms forming a rarefied gas,
and the number of atoms at level m is Nm. The interaction of the atoms of
this gas can be neglected. Let the gas at temperature T be in equilibrium
with thermal radiation. Let us denote the number of atomic transitions
from state m to state n by Nmn. If we denote the probability of such
transitions per unit time by pmn, then the number of transitions Nmn in time
dt will obviously be equal to

dNmn = рmn Nm dt (7.111)
Under the influence of an external electromagnetic field, induced

transitions from a lower energy state to a higher state can also occur.
Number of induced transitions dN mn in time dt is
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dNmn = р’mn Nm uω1T dt, (7.112)
where p'mn is the probability of occurrence of induced transitions per unit
time;

Nn is the number of atoms in state n;

uω1T is the radiation density in dimensionless units.

The quantities Nmn, pmn, and pnm are called Einstein coefficients.

Einstein suggested that

pmn = рnm (7.113)
The calculations show that in this case𝑁𝑁 = 𝑒 /  𝑒 /𝑈 = 𝑝𝑝 1𝑝𝑝 𝑒ℏ / − 1⎭⎪⎬

⎪⎫
(7.114)

Since spontaneous transitions occur from different atoms at
different unrelated points in time, they cause incoherent radiation.
Therefore, the radiation of all natural light sources such as stars, the Sun,
an electric light bulb, a candle, a fire, etc. is incoherent.

In contrast to spontaneous radiation, induced radiation is coherent
with the field that caused the radiation. Equality (7.113) implies mutual
reversibility of induced absorption and emission transitions. And this is
possible if the emitted photons are equivalent to the absorbed ones, i.e.
photons of light that excite the radiation.

In the equilibrium state, the number of atoms in the normal (lower
energy) state is usually greater than the number of radiating atoms.
Consequently, the electromagnetic wave falling on the substance as it
passes through the substance is attenuated (partially absorbed). It turned
out, however, that in principle the inverse state of matter is possible, in
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which the number of its excited atoms is greater than the number of atoms
in the normal state. Such a state of matter is called inverse, inverted,
reversed, or non-equilibrium. The process of putting matter into an
inverse state, or, as they say, into a state with inverse population, is called
pumping. At present, a number of pumping methods have been
developed - thermal, optical, chemical, electro-ionization, etc. A medium
filled with a substance with inverse population is called an active
medium. In the active medium, the induced radiation exceeds the
incident radiation. In other words, the light passing through the active
substance is amplified and becomes coherent.

7.4.5.1. Quantum generators
The amplification of light by an active medium is used in quantum

generators called lasers. The name is an acronym for "light amplification
by stimulated emission of radiation". Lasers were created in 1954 by
Soviet physicists Nikolay Basov and Aleksandr Prokhorov and,
independently of them, by the American physicist Charles H. Townes.

The laser must have an active medium, a pumping system and an
optical resonator. The optical resonator ensures that the laser generates
strictly coherent radiation. Two facing each other and located on the same
optical axis plane-parallel (or concave) mirrors (1 and 2), between which
the active medium 3 is located (Fig. 7.19) are commonly used as a
resonator.
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Figure 7.19.

One of the mirrors (2) must be partially transparent to allow
radiation to escape outside the resonator. As a result of the spontaneous
transition between the levels of the atoms of the active medium the
excited atoms or ions accumulate at one or more of the so-called
metastable levels, and then they are momentarily switched to the ground
state, emitting light of the appropriate wavelength and phase. The phase
shift of the radiation of different atoms is close to zero, and the waves
emitted by different atoms are coherent.

The light wave (photon flux) emitted by each given atom, passing
through the active medium, is amplified by repeatedly reflecting from the
mirrors of the resonator. Photon fluxes, playing the role of induced
radiation, cause secondary, then tertiary and so on radiation. Reaching the
semi-transparent mirror 2, the radiation partly goes out and partly is
reflected. The reflected radiation is used again for generation, forming a
positive feedback. For the resonator to work properly, the reflected wave
returning to a given point of the active medium must have a phase at that
point that coincides with the phase of the primary wave.

pumping
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In other words, (clause 6.6.1) there must be an integer number of
half-waves on the resonator length L, i.e.𝐿 = 𝑘 𝜆2 (7.115)

where L is the distance between the mirrors;

λ is the wavelength.

It follows from (7.115) that the frequency of modes generated by
the resonator, 𝜔 = 𝜋𝑘𝑐𝐿𝑛 (7.116)

where n is the refractive index of the medium.

The modes that make up the laser radiation have different
intensities in this case. The greatest intensity have, obviously, those
modes whose frequencies coincide, i.e. resonate, with the frequency of
radiation of inverse transitions. It should be kept in mind, however, that
inverse transitions give an extended spectral line consisting of a whole
set of frequencies. In this case, only one of the modes of laser radiation
appears at the frequency of the main spectral line. The other frequencies
giving low-intensity components in the composition of the laser radiation
only slightly expand its spectrum. As a result, the spectrum of laser
radiation is narrower than the spectrum of inverse radiation. In other
words, laser radiation has a very high degree of monochromaticity.
Considering that laser radiation in multimode mode includes waves
(photons) differing not only in frequency, but also in phase, the mode
close to single-mode is chosen, for which the dispersion of radiation in
phase is minimal and, therefore, the best coherence is provided.

Let's take the ruby laser, one of the first quantum oscillators, as an
example. The ruby laser consists of a ruby crystal in the form of a rod
about 5 cm long, forming the active substance. From the chemical point
of view, a ruby crystal is an aluminum oxide Al2O3, in the crystal lattice
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of which some aluminum atoms (a few hundredths of a percent) are
replaced by chromium ions, Cr+++.

Figure 7.20 shows a scheme of induced optical transitions at laser
pumping.

Figure 7.20.

Electrons of chromium atoms move from ground level 1 to
excitation level 2 during the pumping process. The lifetime of atoms in
the excited state is usually about 10–8 s. The electrons of chromium atoms
do not return to the ground level (1), but to the auxiliary level (3), which
is much closer to the ground level. Level 3 has the remarkable property
that it is metastable. The chromium atoms' hold time at this level is
several orders of magnitude longer (10–2 s) than at level 2. For this reason
it is also called radiation-free. Spontaneous transition from level 3 to
level 1 is prohibited by the selection rules. The energy released during
this transition is transferred to the crystal lattice. As a result, significantly
more excited chromium atoms accumulate at level 3 than at the initial
level 1. In other words, there is an inversion of level 1 to level 3 in the
crystal. The transition from level 3 to level 1 is proceeded as follows.
First, under the action of external photons present in the matter, a few
electrons move from level 1 to level 2. The resulting photons, reflected
from mirror 1 (see Fig. 7.19), travel through the active medium,
repeatedly and avalanche-like amplifying and causing avalanche-like
induced coherent emission in the transition of electrons from level 3 to
level 1.
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Ruby lasers operate in pulsed mode. They are pumped by a high
intensity green light. The optical resonator is created by carefully
polishing the ends of the ruby crystal. One end is coated with an opaque
layer of silver and the other with a thin translucent layer that allows about
8% of the incident radiation to pass through.

Gas lasers, in which a gas or gas mixture is the active medium,
are also widespread. Gas lasers operate in a continuous mode. The
inversion in gas lasers is carried out not by optical pumping but by a gas
discharge. An example of a gas laser is the helium-neon laser.

Recently, preference has been given to semiconductor lasers in
which the active medium is a extrinsic semiconductor, which is pumped
by a direct current passing through the p – n junction in the forward
direction. Four-level gas lasers in which, in addition to the metastable
level, a working level is also created between the metastable and the main
level.

Lasers are widespread in many different fields of science,
technology, medicine, and life. Laser technology is used for welding,
cutting, melting metals, and drilling holes. In medicine, lasers are used
for bloodless surgery and treatment of eyes, skin diseases, etc.

High coherence and monochromaticity of the laser beam is used
in alignment, leveling works, in optical communication systems, in
holography, as well as for the study of space objects. Laser spectroscopy,
which allows observation of the spectra of individual particles, is also a
promising technology.

Lasers are widely used in experimental physics to study high-
speed processes, ultrafast photography. In everyday life, lasers are used
in particular for playing audio-visual information, etc.



82

7.4.6. Elements of molecular quantum theory

As mentioned above, a molecule is the smallest particle of matter
that has its basic chemical properties and consists of atoms connected by
chemical bonds. The number of atoms that make up molecules ranges
from two to hundreds of thousands in the so-called macromolecules that
form polymers, including organic substances.

Atoms in molecules continuously make vibrational movements.
Under certain conditions, for example in a gaseous environment,
molecules can perform translational and rotational motion. Molecules,
like atoms, have no clear boundaries or definite form. Conventionally,
molecules are often considered to be spherical in shape. This
approximation can be considered sufficiently true for simple molecules
at distances sufficiently large compared to their sizes. If we assume that
a molecule has a spherical shape, then, knowing the density of the
substance, we can estimate the size of its molecules through the radius of
the sphere.

The size of molecules grows as the number of atoms in them
increases. Their shape changes accordingly. The approximate sizes of
molecules are in the range 10–10 – 10–7 m, the shape of macromolecules
can be linear, spiral, spherical, globular, etc. Macromolecules can be seen
with modern electron microscopes.

Combining atoms into molecules is usually an energetically
advantageous process, since the energy of a system of atoms in a bound
state is less than in a free state. This, as mentioned above, is a
consequence of the fact that the mass of a system of bound particles is
always less than the total mass of these particles in the free state. The
specified defect of masses of bound particles arises due to the fact that
the lag, or, the same thing, inertia, and, therefore, mass as a measure of
inertia, decreases with the increase of bonds and the corresponding
convergence of particles during the transfer of interactions. On the other
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hand, from the equivalence relation between mass and energy (see ), the
magnitude of the mass defect corresponds to a corresponding decrease in
the energy of the system. This energy is transferred by the system to the
surrounding bodies. Thus, in chemical fusion reactions, excess energy is
generated and released in the form of heat.

Among the reactions of synthesis at the atomic level, which form
a large number of bonds and are accompanied in this connection by the
release of large amounts of heat, we should note the reactions of bonding
with oxygen of carbon and many hydrocarbon compounds. These
include, for example, hard coal, wood, gas, oil, petroleum products, peat,
etc. These reactions are commonly referred to as combustion, and the
materials listed are called combustibles or fuels. During combustion, a
very large amount of energy is released, heating the burning substance
(fuel) to such a high temperature that it transforms into a glowing plasma
(fire).

To make the fusion reaction possible, energy must be expended to
overcome the electromagnetic repulsion interactions of the atoms as they
approach each other. This energy can be either less or more than the mass
defect. In addition, bonding reactions are often accompanied by
decomposition reactions, which go, on the contrary, with the absorption
of energy. For these reasons, all chemical reactions are divided into
reactions that take place with the expenditure of energy and reactions that
take place with the release of energy.

A molecule is a quantum system, and therefore its internal energy
is quantized. Roughly, we can assume that it is the sum of the energies of
electronic movements Ɛel, the vibrations of atomic nuclei Ɛosc, and the
rotation of the molecule as a whole Ɛrot.

With this

Ɛel >> Ɛosc >> Ɛrot (7.117)
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The state of a molecule is described by the Schrödinger equation,
which decomposes into equations for electrons and for nuclei.

A molecule is an electrically neutral system, but its electron
density is not uniformly distributed. The electronic levels of the atoms of
the molecule are also superimposed on the interatomic interactions.
Under their influence, each atomic level splits into many sublevels. The
electronic levels of a molecule are determined by a set of quantum
numbers characterizing the state of all its electrons, namely, total orbital
momentum 𝐿 , total spin momentum 𝐿 , multiplet t = 2 LS + 1, and total
momentum 𝑀 = 𝐿 + 𝐿 . The designation of the states of a molecule is
the same as for a multielectron atom. The Schrödinger equation for nuclei
describes vibrational and rotational levels. The oscillations of the nuclei
are non-harmonic and are therefore represented as certain sums of
harmonic oscillations.

A bi-atomic molecule can be viewed as a harmonic oscillator with
frequency ω. Quantization of its energy givesℇ = ℏ𝜔 𝜒 + 12  (7.118)

where χ is the oscillatory quantum number;

A polyatomic molecule can be represented as a set of oscillators,
so that

ℇ = ℏ𝜔 𝜒 + 12 . (7.119)

Rotational levels can be found by quantizing the rotational energy.
For a two-atom moleculeℇ = 𝑀2𝐼  (7.120)

where M is the torque;
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I is the moment of inertia relative to the axis of rotation
perpendicular to the axis of symmetry of the molecule.

According to the rules of quantization𝑀 = ℏ4𝜋 𝐽(𝐽 + 1) (7.121)

where J = 0, 1, 2, ... is the rotational quantum number.

Molecular spectra of different types occur at different transitions
between energy levels

ΔƐ = ΔƐel + ΔƐosc + ΔƐrot (7.122)
If ΔƐel ≠ 0, the spectral emission lines of the molecules are

observed in the visible and ultraviolet part of the spectrum. Rotational
spectra are in the region with a wavelength of 0.1 - 1 mm, and vibrational
spectra lie in the infrared region in the wavelength range of 1 - 50 mm.

Molecules are formed by combining atoms by means of so-called
chemical bonds, which are created by electromagnetic interactions of
external (valence) electrons of atoms weakly bound to their nucleus.

There are four types of chemical bonds - ionic, Van Der Waals,
covalent, and metallic. An ionic bond is formed when the reacting atoms
ionize, that is, when one atom gives up its outer electrons and the other
atom attaches them. This happens most often when metals react with
nonmetals. For example, the Na atom contains one electron in the M-
layer and the 3s shell. It is shielded by two electron shells lying closer to
the nucleus and is very weakly bound to the nucleus. The Cl atom, on the
other hand, has a high ionization potential. Therefore, when the two
atoms come within 0.25 nm (2.5 · 10 –10) of each other, the outer electron
of the Na atom goes to the Cl atom. The resulting Na+ and Cl– ions are
mutually attracted and form a NaCl molecule. The newly formed electron
shells of Na and Cl become completely filled with 8-electron shells.
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All inorganic acids, alkalis, and salts (the connection of metals to
acidic residues) are connected by the ionic bonding.

The van der Waals bond binds electrically neutral atoms without
a dipole moment into molecules. Let us consider, for example, two
hydrogen atoms that are so far apart that their electron clouds do not
overlap. In the 1s state, the electron clouds are spherically symmetric, and
the average dipole moment of these atoms is zero (the positive and
negative charge of the nucleus and the negative charge of the electrons
are combined). However, the instantaneous values of the dipole moments
of each atom are not zero.

As atoms come closer to each other, their momentary dipole
moments are either attracted or repelled. In the case of coordinated
motion of the electrons, in which a constant attraction of the atoms is
ensured, they form a stable molecule.

The interaction force of such atoms is called dispersion force. It
has a quantum character and is explained by a decrease in the energy of
interacting atoms. Van der Waals bonding in the case of polar atoms is
orientational in nature (see Figure 7.21). Molecules with a high
polarizability can also have an induced electric moment, creating an
inductive attraction interaction. In practice, all of the above mechanisms
of van der Waals interaction arise simultaneously. Despite this, they are
very weak and are much closer to physical intermolecular interaction than
to chemical interaction.

Figure 7.21.
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The third type of chemical bonding combines identical atoms
(e.g., O2, N2, etc.) or atoms with high chemical affinity into molecules.
These include, for example, hydrogen-carbon, hydrogen-oxygen,
nitrogen-oxygen, oxygen-carbon, and many similar pairs. Covalent
bonding is leading in the formation of macromolecular polymers and all
organic substances.

Covalent bonding is characterized by the collectivization of
electrons. This happens when atoms get so close to each other that the
electron clouds of their outer electrons overlap, and these electrons
belong not only to their own nucleus, but also to the nucleus of the
interacting atom (see Figure 7.22).

Figure 7.22.

In the methane molecule shown in Figure 7.22, the cloud of each
s-electron of the hydrogen atom is superimposed on the clouds of the
dumbbell form of the 2p-states of the carbon atom.
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The fourth type, metallic bonding, is realized mainly in metal
crystals. Each monocrystal can only conventionally be called a molecular
aggregate. In fact, it is a giant molecule with a periodic structure, the so-
called crystal lattice, in the nodes of which the positively charged ions of
a given metal are located. These ions are formed due to the fact that the
electrons very weakly bound to their nuclei bounce off them and create
an electron gas that fills the cavities of the crystal lattice. The bonding
between metal atoms is the result of the interaction between lattice ions
and electron gas. This, by the way, implies a long-range order of
interaction, when each ion interacts not only with the surrounding
neighboring ions, but also with all the ions of the crystal, so that the entire
crystal is a single entity. Thus, in the case of metal bonding, the electrons
of all atoms of the crystal are collectivized.

In quantum theory, the geometry of molecules is characterized by
a set of internal parameters - bond lengths, as well as the value of valence
and torsion angles. The valence angles are the angles between two
chemical bonds coming out of one atom, and the torsion angles are the
dihedral angles of rotation around the bonds. For example, the hydrogen
peroxide molecule H2O2 is represented as follows

Н – О – О – Н

The bond lengths of O – O and O – H atoms are 0.147 nm and
0.095 nm, respectively. The H – O – O valence angle is 95º. The torsional
angle of rotation around the O – O bond, equal to 102º, is formed by the
dihedral angle between the planes H – O – O and O – O – H.

Each state of a molecule has a characteristic equilibrium
geometry, which is provided by its energy.

The symmetry of a molecule determines the symmetry of its wave
function and is reflected, one way or another, in its properties - spectra,
polarization in an external electric field, magnetic properties, geometry,
etc. In particular, it leads to degeneration of electronic, vibrational and
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rotational levels, determines exclusion of certain transitions, reduces the
chemical activity of molecules. Molecules with a center of symmetry do
not have a constant dipole moment. Molecules that do not have, in
addition, a plane of symmetry form chemically active substances, etc.

Some molecules of the same composition differ in the order of
their atoms and are called isomers. Isomers form substances with
different physical and chemical properties. In addition to structural
isomerism, there are also rotational (rotomers, conformers) and optical
isomerism. The former arise from the rotation of atoms and their groups
around chemical bonds and represent different states of the same
molecule. The latter are mirror-symmetric molecules that rotate the
polarization planes in opposite directions. These include, in particular,
molecules of a number of organic substances that are part of living
organisms (molecules of optically active substances).

7.4.7. Elements of quantum solid-state physics

The entire variety of properties of physical bodies is determined
by the interactions of their electrons and atomic nuclei. Physical bodies
in the solid aggregate state form crystalline structures. The only
exceptions are so-called supercooled liquids or amorphous bodies, such
as glass, wax, paraffin, etc.

The word "crystal" comes from the Greek word κρύσταλλος of
the same sound (krústallos), which means "clear ice". Nowadays, crystals
are called solids with a three-dimensional atomic periodic structure
having the shape of a regular polygon. These include a regular pyramid,
parallelepiped, tetrahedron, prism, dipyramid, octahedron, etc. A
distinction is made between monocrystals and polycrystals. Monocrystals
of table salt, for example, under equilibrium conditions of formation,
repeat the shape of the elementary (i.e. the smallest) cell of the crystalline
body. Polycrystals are bodies consisting of many chaotically oriented
crystals of very small size, grains. All metals except liquid mercury are
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typical polycrystals. All crystals have a cellular structure. Each cell has
the shape of a regular polyhedron, which is a characteristic of this crystal.
Numerous equally oriented cells form a crystal lattice. The parameters of
the unit cell of a crystal lattice are determined by the way the atoms are
arranged in it, and the properties of crystals as a whole are a function of
the above types of chemical bonding between atoms. Ionic bonding is
most often characteristic of dielectrics, which, when dissolved in water,
dissociate into their constituent ions and form electrical current
conductors of the second kind. Crystals with metallic bonds form
conductors of the first kind. The electrical conductivity and thermal
conductivity of metals are determined by the number of electrons on the
outer shell and the degree to which they are bonded to the nuclei, which
are chemically characterized by valence. Covalent bonds give crystals
high hardness, low electrical conductivity, and high refractive indices
(diamonds, for example). Van der Waals weak bonds are characteristic of
molecular crystals. They are easily fusible and have low mechanical
characteristics.

An elementary cell can be built up in different ways. The edges of
a cell are called periods. A unit cell can contain from one atom (chemical
elements) to 100 atoms (chemical compounds) and even 103 to 106 atoms
(biological crystals). The lattice period ranges from a few angstroms to
103 Ǻ. Any atom in a given cell corresponds to a translationally
equivalent atom in every other cell (translation is a shift transformation).

7.4.7.1. Elements of the Band theory
Quantum theory of the energy spectra of electrons in solids

(crystals) is called the band theory. This theory is based on the one-
electron approximation, which proceeds from the following assumptions:

1) the mass of the nuclei anchored in the nodes of a perfect crystal
lattice is incommensurably large compared to the mass of the electrons
of the electron gas, and therefore the nuclei are assumed immobile
relative to each other and the electrons;
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2) atomic nuclei form an electric field with a periodic potential𝑈(𝑟), in which the electron moves so that𝑈(𝑟 + �⃗� ) = 𝑈(𝑟) (7.123)
where �⃗�  is the vector of the nth node defining the translation.

Based on this model, the Bloch theorem was formulated,
according to which the wave function of the electron 𝜓 (𝑟) in a crystal
lattice 𝜓 (𝑟) = 𝑈 (𝑟)𝑒 ( ⃗, ⃗) (7.124)
where �⃗� is the wave vector of the electron.

In other words, according to Bloch's theory, the wave function of
an electron moving in a crystal lattice coincides with the wave function
of a free electron to an accuracy of the lattice period.

The wave function (7.124) can in this case be regarded as a
solution of the special Schrödinger equation. It follows from this solution
that the energy spectrum has the form of a series of allowed energy bands
(electronic bands) Ɛl (k). Here l is the number of the allowed band.
Allowed bands are obviously divided by band gaps.

It also follows from (7.124) thatℇ �⃗� + 𝑏 = ℇ �⃗� (7.125)
where 𝑏 is the vector of the inverse lattice. The concept of the inverse
lattice is abstract and is introduced into theory for the convenience of
calculations. An inverse lattice is a lattice with lengths inverse to those of
the forward lattice.

Since the wave vector �⃗� is expressed in terms of momentum 𝑃 =ℏ�⃗�, the energy levels ℇ �⃗�  can be viewed as functions ℰ 𝑃 , where 𝑃
is a quasimomentum, different from the momentum of a free electron.
This means that the electron in the crystal is some kind of quasi-particle
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(quasi-electron) whose characteristics are called effective and are
denoted by *. For example, such is the effective mass of quasi-electrons
m*. The function ℰ 𝑃  describes the energy structure of each band and
is called the dispersion law, and the momentum components Px, Py, and
Pz are the generalized coordinates of the momentum phase space. (see
Section 2.5).

If the generalized coordinates are fixed, then Ɛ (Px), Ɛ (Py), Ɛ (Pz)
are phase lines belonging to planes Ɛ (Рi). They are called dispersion
curves. The entire set of Ɛ (Рi) forms a set of dispersion curves
characterizing the function ℇ 𝑃 .

If any value of energy is fixedℰ 𝑃 = 𝑐𝑜𝑛𝑠𝑡 (7.126)
then (7.126) is the isoenergetic surface equation. The family of surfacesℇ 𝑃  in this case is characterized by the law of dispersion.

Band structure can also be introduced without resorting to solving
the Schrödinger equation. Let a crystal be formed by N atoms, each of
which in the free state has a discrete electronic energy spectrum. When
these atoms are combined into a crystal lattice, a huge molecule is formed
in which the electrons of all atoms are combined into a single quantum-
mechanical system. The energy levels of the atoms are combined into an
energy band containing, taking into account the spin, 2N levels. This band
of allowed levels ℇ 𝑃 . If there are Z electrons per one atom, then the
total number of levels in the crystal is 2NZ. We are talking about discrete
but fairly close to each other levels. The lower bands, corresponding to
the levels of internal electrons, are quite narrow and completely filled.
They occupy the levels of the allowed bands, starting from the bottom.
The physical properties of crystals are determined mainly by the upper
bands containing electrons. The interval between the bottom of the
uppermost, still containing electrons, band Ɛ2 and the ceiling of the
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previous completely filled band Ɛ1, is called the band gap (see Figure
7.23). The width of the band gap

ΔƐ3. = Ɛ2 – Ɛ1

Figure 7.23.

Keep in mind that there may be several other allowed bands and
band gaps below the filled band which are usually not considered.

If at temperature T = 0 all bands containing electrons are
completely filled, the next upper band is therefore empty. It is separated
from the nearest, fully filled band by a wide band gap. In this case, the
crystal, in terms of electrical conductivity, is a dielectric. In metals, or 1st
kind conductors, the band containing electrons is partially filled, the band
gap is very narrow, zero or even negative (when the upper band
containing electrons overlaps the fully filled lower band). Materials for
which the band gap width is between that of dielectrics and metals are
called semiconductors. For semiconductors, therefore,
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ΔƐmet < ΔƐsc < ΔƐdiel

Materials with a perfect crystal lattice are called pure. The
structure of real crystals always has some kind of disorder, which are
called lattice defects. Defects most often occur during crystallization
under the influence of mechanical, thermal, electrical, optical effects, as
well as the introduction of impurities, etc. The simplest defects are
vacancies (a lattice node in which an atom or its nucleus is missing),
dislocations, which are lines along and near which the proper
arrangement of atoms, characteristic of a crystal, is broken. There can
also be foreign, doping agent atoms or ions present in crystal lattices,
replacing the main atoms or embedding themselves between them. In
addition, combinations of vacancies with electric current carriers are
possible. Carriers of electricity in crystals, besides free electrons, can also
be the so-called holes, which are quantum states in the atom that are not
occupied by electrons.

Band theory made it possible for the first time to establish general
patterns of electrical conductivity in all solids, conductors, dielectrics and
semiconductors, and to obtain the exact mathematical relations for their
description.

Semiconductors exhibit dielectric properties at absolute zero
temperature. As the temperature increases, the semiconductor properties
gradually prevail. Depending on the presence of doping agents, there are
semiconductors with intrinsic and extrinsic conductivity. Semiconductors
mainly include elements of groups 3 - 5, as well as elements of periods 3
and higher in the Periodic table. These are primarily Si, Gr, Ga, As, Se,
Zr, and a number of others. In semiconductors with intrinsic conductivity,
the bonds have a covalent nature, and each atom is associated with
equidistant nearest neighboring atoms of 3 - 4 groups, the number of
which is determined by its valence. Figure 7.24 shows the spatial lattice
layer of silicon as an example. Since the silicon atom has 4 electrons on
its outer shell, it forms covalent bonds with 4 neighboring atoms.
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Figure 7.24

As  a  result,  each  pair  of  atoms  formed  by  this  atom  with  4
neighboring atoms will have 2 electrons in common.

In some cases, one or both of the electrons of a collectivized pair
are replaced by holes. In essence, this means that one or both electrons of
the pair have detached from their nuclei and moved into intercellular
space. This occurs as a result of breaking individual bonds under the
influence of temperature or other factors.

When one bond is broken, one electron is released and a positive
uncompensated charge in the form of a hole appears in the vicinity of the
place it left. If the resulting hole recombines with another electron, it goes
to the empty place it left. Under the action of a directed external field, the
free electrons move in one direction and the holes in the other.

In terms of the band theory, when a semiconductor is excited, a
valence electron moves from the filled (valence) band to the conduction
band and becomes a free carrier of negative charge, leaving instead a hole
in the filled band, which is also a free carrier, but with a positive charge.
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During recombination of a free electron with a hole, the electron passes,
on the contrary, from the conduction band to the valence band.

* Under the action of an external directional electric field in a
semiconductor at temperature T ≠ 0, a current arises with a density of 𝚥𝚥 = 𝚥 + 𝚥 (7.127)
where 𝚥  is the vector of electron current density;𝚥  is the vector of hole current density.

From the definition of the current density vector it follows that𝚥 = 𝑛 (−𝑒)𝜐𝚥 = 𝑛 𝑒𝜐   (7.128)

where ne and np are concentrations of electrons in the conduction band
and holes in the valence band, respectively;𝜐 , 𝜐  are the average speeds of directional motion of electrons and
holes. With this 𝜐 = Δ𝜏 �⃗�𝜐  = Δ𝜏 �⃗� (7.129)

where Δτe, Δτp are the free path times of carriers between two successive
collisions with lattice ions;�⃗� , �⃗�  are the accelerations of the directional motion of the carriers.

From the second law of dynamics is follows that

�⃗� = 𝑒𝐸𝑚 ∗�⃗� = 𝑒𝐸𝑚 ∗⎭⎪⎬
⎪⎫

(7.130)

where 𝐸 is the external field strength;
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me*, mp* are the effective masses of the carriers.

On the other hand, according to Ohm's law for specific
conductivity γ 𝚥 = 𝛾𝐸 (7.131)

After appropriate substitutions we obtain𝛾 = 𝑒 𝑛 Δ𝜏𝑚 ∗ + 𝑛 Δ𝜏𝑚 ∗ (7.132)

Since, by definition

ne = np = n, (7.133)
then finally

γ= en (ke + kp), (7.134)
where ke, kp are the mobility of carriers –𝑘 = 𝜐𝐸 (7.135)

The emergence of an electron-hole pair is called generation, and
the opposite process of its disappearance is called recombination. It is
easy to understand that the probabilities of generation and recombination
in the stationary state are equal

р1 = р2.

These probabilities are known (see Section 7.2.1.2) to be
determined from the relation𝑝 = 𝑒 (7.136)
whence, since the recombination probability is proportional to the
concentration of both electrons and holes, then

р2 = anenp.

It follows from (7.133) that
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𝛾 = 𝛾 𝑒 (7.137)
In semiconductors with intrinsic conductivity, the number of

electron and hole carriers is equal to each other. In semiconductors with
extrinsic conductivity the situation is different. If a small number of 5-
valent atoms are introduced into the crystal lattice of a 4-valent
semiconductor, the 5th valence electron cannot form a covalent bond and
is superfluous and already at a sufficiently low excitation energy becomes
free, and the atom becomes a positively charged ion (forms a hole). As a
result, conduction electrons of doping agent atoms appear in the
semiconductor, and the atoms themselves form donor levels.

If 3-valent doping agent atoms are introduced into the crystal
lattice of a 4-valent atom, then, as is easy to see, free charge carriers in
the form of holes appear in the crystal, and the atoms themselves form
acceptor levels.

From the point of view of the band theory, doping agent atoms are
distributed chaotically throughout the crystal lattice of the main atoms
and thus violate its periodicity. The energy levels of doping agent atoms
are located in the band gap, since they are located in the intercellular
space and are subjected to additional influence from the atoms of the
crystal lattice. Their bonding energy, therefore, is lower than that of the
main atoms, but higher than that of the free carriers. For this reason, their
levels are above the ceiling of the valence band, but below the bottom of
the conduction band. Extrinsic levels are called local levels. Their free
electrons and holes are localized near their atoms and therefore are not
free enough to move into the conduction band and create a conduction
current under the action of an external field. With this the energy of free
electrons of doping agent atoms is somewhat lower than that of the free
electrons of the main atom, i.e., their levels are located near the bottom
of the conduction band. For the same reason, the levels of free holes are
located near the ceiling of the valence band.
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Under the influence of an external field, electrons of donor levels
move into the conduction band and create an electronic current, and holes
of acceptor levels move into the valence band and create a hole current.
Therefore, semiconductors of the first kind are called n-type or electron
semiconductors, and those of the second kind are called p-type or hole
semiconductors. (see also Section 4.1.4.6).

7.4.8. Quantum Liquid

According to the concepts of classical physics, the kinetic energy
of bodies decreases in proportion to the decrease in temperature. At the
temperature of absolute zero, the thermal vibrations of the particles must
stop, i.e. they must take a certain position, and the body must go to the
crystalline state.

Experience, however, shows that some bodies retain a liquid state
or even acquire the property of superfluidity. In addition, most metals,
while remaining solid, acquire the properties of superconductivity. This
is explained by purely quantum effects. According to the uncertainty
relations, the kinetic energy of particles at absolute zero temperature is
not equal to zero. The particles in this case continue to make the so-called
zero-point energy fluctuations. When the amplitude of the zero-point
fluctuations is comparable to the average distance between the particles,
the body remains liquid even at absolute zero temperature. For this,
however, it is necessary that the intermolecular interaction forces
between the particles and their masses be sufficiently small, as, for
example, in helium isotopes. Such fluids are called quantum fluids.

Quantum liquids are divided into Bose–Einstein condensate and
Fermi liquids, depending on the spin value of the particles that form them.
For example, the spin of helium isotope 4 with an even number of nucleus
particles is zero. This isotope belongs to Bose–Einstein condensate, and
helium isotope 3, which has a spin of 1/2, belongs to Fermi liquids.
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The electron gas formed by conduction electrons in the crystal
lattice of metals is also referred to Fermi liquids.

The properties of quantum liquids were discovered and studied by
the Soviet physicist Pyotr Kapitsa, and the theory of helium superfluidity
was developed by another Soviet physicist Lev Landau.

The essence of superfluidity of quantum liquid is that when it
flows through a thin tube or slot at a speed less than the critical one, it
meets no braking resistance from the walls of the tube (slot). Quantum
liquid formed by conduction electrons in the crystal lattice of metals
contributes to the appearance of superconductivity of these metals. These
properties of quantum liquid are explained as follows. According to
quantum mechanics, any system of interacting particles can only be in
certain states that are characteristic of the system as a whole. In this case
the energy of the system can change only discretely, which is equivalent
to the birth or disappearance of excitations, which can be considered as
elementary quasiparticles with their own energy, momentum, spin, etc.
Quasiparticles include, for example, the so-called phonons, which
characterize the elastic excitations of the system. In Fermi liquids,
quasiparticles arise and disappear only in pairs, which are sometimes
called Cooper pairs.

At low temperatures, the number and interactions of
quasiparticles are small, and the quantum liquid is close to an ideal gas.
At absolute zero temperature, quasiparticles tend to occupy the state with
the lowest energy, which, taking into account the Pauli exclusion
principle, fills a certain, so-called Fermian sphere in the impulse space.
Radius of the Fermian sphere outside which the concentration of particles
n = 0, 𝑃 = (3𝜋 ) / 𝑛 /  ℏ (7.138)

At temperatures other than zero, quasiparticles with momentum
larger than the radius of the sphere appear. These quasiparticles are
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outside the Fermian sphere, leaving instead inside the sphere,
respectively - quasi-holes. The ratio of momentum to velocity calculated
on a Fermian sphere is called the effective mass of the quasiparticle.

The interaction of quasi-particles at absolute zero temperature
manifests itself as a sound wave propagating in quantum Fermi liquid,
which is called zero sound.

If the interaction of quasiparticles of a Fermi liquid has an
attraction character, then the so-called Cooper pair of electrons arises,
which causes superconductivity. This phonon-exchanging pair is called a
Cooper pair, after the scientist who discovered and measured the bonding
energy between its electrons.

The properties of superfluid helium 3 are significantly different
from those of superfluid helium 4 and from Fermi-liquid in
superconductors.

7.4.9. Quantum theory of superconductivity

The phenomenon of superconductivity was first observed in 1911
by the Dutch physicist Heike Kamerlingh Onnes, who discovered that at
a temperature of about 4.15 K the electrical resistance of mercury
abruptly disappears. It turned out that many other metals and alloys have
similar properties.

The property of conductors to drop their resistance to zero by
leaps and bounds at a low, but certain, critical temperature is called
superconductivity.

In addition to the critical temperature, superconductors are also
characterized by the value of the critical magnetic field induction (see
Figure 7.25).
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If the superconductor is in an external magnetic field, it is
displaced to its surface. This phenomenon is called the Meissner effect
(or Meissner–Ochsenfeld effect).

Figure 7.25

The undamped electric current in the superconducting state of the
conductor is concentrated in its surface layer. The thickness of this layer
should be such that the magnetic field created by it would exactly
compensate the external field.

The thickness of the surface layer within which the magnetic field
retains a non-zero value is called the penetration depth. The penetration
depth is between 10–7 and 10–8 m.

Let us consider a metallic sample cooled to a temperature less than
the critical temperature and thus being in a superconducting state. If we
introduce this sample into an external magnetic field with induction B <
Bcr, it will disappear inside the sample.

This is explained by the fact that the penetration of the field inside
the sample leads to the appearance of electromagnetic induction
electromotive force in it. This electromotive force induces an induction

Superconductive state
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current in the sample, the magnetic field of which is directed against the
external field.

It follows from zero resistance of the sample that the internal field
instantly increases to the value of the external field and thus completely
compensates it.

This means that inside the sample the field induction B = μμ0 H =
0. It follows that μ = 0 . In other words, superconductors are ideal
diamagnetic materials (see Section 4.2.2.6).

According to their behavior, all superconductors are divided into
superconductors of the 1st and 2nd kind, which differ significantly in the
magnetization curves M(B) of the unit volume moment dependence on
the magnetic field induction (see Figure 7.26).

In the initial section, at small values of the magnetic field strength
B up to the critical value of the field strength Bcr, the magnetization
curves of superconductors, both 1st and 2nd kind (see Figures 7.26 a, 7.26
b), have a linear nature and practically do not differ from each other.

Figure 7.26.

When the field increases above the critical value, superconductors
of the first kind go to the normal state, and the magnetic moment of the
second kind decreases gradually, so that in the interval between the field
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strength Bcr1 and Bcr2 they retain their superconducting properties. Since
the resistance of the superconductor is zero, Ohm's law does not apply to
it. This means that the current in the superconducting state of the
conductor at a given voltage does not tend to infinity, but is limited by
the amount of charge carried by the field per unit time.

The current intensity in this case is, of course, greater than in a
normal conductor at the same voltage, but in the superconducting state it
is not the current intensity that increases dramatically, but its density,
because the current is displaced to the surface of the conductor. At the
same time, due to the superconductor's lack of resistance, it does not heat
up even at enormous current densities. Another important feature of the
superconducting state is that the current in the unloaded conductor does
not decay over time after the voltage is turned off. It should be borne in
mind, however, that the magnitude of the current in a superconductor is
limited by the value of the critical field, which is introduced into the
conductor by the current.

Purely theoretically, all metals have superconducting properties,
but they manifest themselves differently in different metals. Some metals,
such as Cu, Ag, Au, Pt, Fe, Co, Ni, and most alkali metals have a critical
temperature so close to absolute zero that it is impossible to observe their
superconducting properties. Superconducting properties are strongest in
metals of the rare-earth group, including Nb, V, Ga, Ti, etc. Pure metals
are most often referred to as superconductors of the 1st kind.
Superconducting properties have now also been found in several hundred
alloys, although the components of these alloys themselves are not
always superconductors. Most of the alloys belong to the superconductors
of the 2nd kind. The critical temperatures of superconductors vary from
very low, such as 0.01 K for tungsten, to very high, such as 23 K for the
Nb3Ga alloy. If superconductivity occurs at critical temperatures greater
than 25 K, it is called high-temperature superconductivity. Currently,
alloys with high-temperature superconductivity up to 125 K have been
discovered. This is, for example, the alloy TiB2Ca2Cu3O10. The
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advantage of high-temperature superconductors is that relatively cheap
coolants are used for their cooling instead of expensive liquid helium. For
example, liquid hydrogen is used up to the critical temperature of 90 K,
and liquid nitrogen for higher temperatures. In principle, the possibility
of obtaining high-temperature superconductors with a temperature of 300
K and above, which can be cooled by flowing water is not excluded.

It is impossible to explain the phenomenon of superconductivity
with the help of classical theory. This is due to the fact that, according to
this theory, the resistance of a conductor can decrease to zero only at
absolute zero temperature. In addition, for this it is necessary to assume
that at absolute zero temperature all possible fluctuations of current
carriers completely disappear. This is not really observed in the real
world. As opposed to classical theory, quantum theory allows giving not
one but several explanations of this phenomenon.

The most common one is based on the theory of Fermi gas, which
is the basis for the superfluidity phenomenon of helium described by
Landau. This also takes into account the interaction of conduction
electrons between themselves and the crystal lattice of metal conductors.

The mechanism of this interaction is as follows. Free electrons are
known to create an electron gas in the metal, which moves in the crystal
lattice. This lattice is formed by positively charged ions fixed in the nodes
of the lattice and making thermal vibrations relative to the position of
equilibrium. These vibrations propagate in the crystal lattice in the form
of elastic acoustic waves. The quantization of these waves produces a set
of sound field quanta, phonons. Since ions are charged, their
displacement from the equilibrium position is accompanied by
polarization of the crystal. This polarization propagates as waves in the
crystal lattice and acts with its electric field on the electrons of the
electron gas. As a result, besides the usual Coulomb mutual repulsion
forces, weak mutual attraction forces arise between conduction electrons,
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which, under certain conditions, unite these electrons into stable and
independent of each other Cooper pairs.

In an external electric field, the entire set of Cooper pairs moves
in the direction of the field as a unit, without interacting on average with
the crystal lattice, that is, without encountering any resistance. In the case
where the number of outer shell electrons is odd (1 or 3), their Cooper
pairs do not completely overlap the crystal lattice, and in the conductor
may remain excited areas that destroy the pairs and the overall
superconductivity of the conductor. This explains the fact that the metals
of these groups, as mentioned above, usually do not exhibit
superconducting properties even at very low, close to absolute zero,
temperatures.

The mechanism of superconductivity is explained in quantum
theory as follows. Let some electron 1 interact with the crystal lattice and
put it in an excited state. The resulting polarization wave is equivalent to
the emission of a phonon, which transfers some energy and momentum
to the lattice. Electron 2, which is close to electron 1, interacts with the
excited crystal lattice and takes on the energy and momentum of
excitation, which is equivalent to its absorption of a phonon. Due to the
exchange of electrons of 1 and 2 pairs, the resulting interaction of
conduction electrons with the crystal lattice is compensated by the
phonon. This means that on average, i.e. during the total time of emission
and absorption of the phonon by pair 1 and 2, the resulting excitation of
the system disappears, and the electron gas and the crystal lattice return
to their initial state. The other pairs of electrons behave similarly,
provided that each pair, exchanging phonons, is stably bound together
and does not interact with other pairs.

The phonon exchange mechanism was discovered in 1950. In
1956, Cooper solved the quantum mechanical problem of the phonon
attraction of electron pairs. He defined the phonon attraction binding
energy 2∆ as a function of the lattice oscillation frequency ωD (the
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Debyean frequency of phonons) and the density of electronic states to
Fermi levels υ (Ɛp) through the electron-phonon interaction constant g

Δ ≈ ℏ𝜔 𝑒 ℇ (7.139)
It was found that the stability of the pair is ensured only if the

energy of thermal fluctuations does not exceed the bonding energy of
these pairs.

Calculations show that the bonding energy of these pairs is
relatively low and is in the range of 10–3 · 10–4 eV. This energy
corresponds to a small value of absolute temperature in the range (2 – 25)
K. If this condition is met, the movement of pairs is rigidly coherent.

This means that Cooper pairs cannot change their states
independently of each other. The coherence of these states also means a
high degree of orderliness of the pairs' motion and the independence of
this motion from the characteristics of the system and the pairs
themselves.

The phenomenon of superconductivity leads to another
interesting, so-called stationary Josephson effect. This effect is that if
two metals are separated by a very thin layer of dielectric (on the order of
10-9 m), called a tunnel contact, then conduction electrons can flow
through it, as through a potential barrier, and move from one metal to the
other.

When these metals are in a superconducting state, Cooper pairs
will leak through the tunnel contact. Under the action of the DC voltage
applied to the contact, a superconducting current is generated in it. If this
current does not exceed some critical value, determined by the critical
value of the magnetic field strength, the voltage drop in the tunnel contact
is zero.

When a current greater than the critical current is passed through
the tunnel contact, a non-zero voltage drop occurs across the contact.
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Under the action of this voltage, the contact emits monochromatic
radiation.

This means that an alternating current of frequency ω =  2eU/ħ
flows through the contact to which a constant voltage is applied. Here,
2eU is the difference in the principal standing energies of the Cooper
pairs in the left and right metals (see Figure 7.27a).

Figure 7.27.

It should be taken into account that one metal (1) radiates and the
other metal (2) absorbs photons with energy ħω.

Monochromatic contact radiation is used in interferometers of the
highest sensitivity and accuracy.

The device based on the Josephson stationary effect we discussed,
used for high-precision measurement of weak magnetic fields, is called a
SQUID. SQUID is an acronym for superconducting quantum
interference device.

SQUIDs have also found applications in biology and medicine to
measure the magnetic fields of weak currents associated with heart and
brain function. In electronics, SQUIDs are used as high-speed computer
elements.

Tunnel contact
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7.4.10. Fundamentals of quantum theory of the atomic
nucleus. Internal quantum numbers.

So far we have considered processes that are the consequence of
electromagnetic interactions occurring at the atomic-molecular level.
They also include intermolecular interactions that cause thermal
phenomena and chemical processes.

Let us now turn to the processes that arise as a consequence of
intranuclear interactions.

The atomic nucleus was discovered by the famous British
physicist Rutherford in 1911 in experiments on the scattering  of  α-
particles. Rutherford's hypothesis, according to which the positive
charge of the atom is concentrated in its center (the nucleus) and occupies
a minuscule volume (according to Rutherford's calculations it is 15 orders
of magnitude below the volume of the atom as a whole), was confirmed
first by the works of Bohr, and then by direct experiments of English
physicist Moseley. Currently, the size of the nucleus of atoms is estimated
to be in the order of 10-15 m.

It turned out that the atomic nucleus, apart from the nucleus of the
hydrogen atom, in turn has a rather complex structure, the elements of
which are connected by strong intranuclear interactions (see Section
1.2.2).

The quantum theory of the atomic nucleus is based on its
universally accepted model, proposed in 1932 by the Soviet physicist
Dmitri Ivanenko and the German physicist Werner Heisenberg.
According to this model, the nucleus of atoms consists of electrically
charged protons with a positive charge numerically equal to the electron
charge (1.6∙10-19 C), and uncharged neutrons. Only the nucleus of the
hydrogen atom contains no neutrons and consists of only one proton. The
proton charge is conventionally assumed to be 1. The charge of the
nucleus Z, expressed in conventional units, determines the chemical
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properties of atoms and their serial number in the Periodic table. The
proton and neutron masses refer to fundamental constants and  are
approximately 1.67 ∙ 10-27 kg (938.4 MeV/s2). Protons and neutrons are
otherwise indistinguishable, so they are often considered to be one and
the same particle, a nucleon, in different charge states. Nucleons are
fermions and have a spin value equal to 1/2.

Proton is characterized by enormous stability. Its lifespan,
according to modern concepts, is about 1031 years in the free state. The
neutron in the free state is not stable. It lives only 15.3 minutes and decays
into a proton, an electron, and an antineutrino. On the contrary, in the
bound state, for example in the nuclei of stable atoms, neutrons are highly
stable.

Nucleons belong to the group of massive intranuclear particles,
hadrons, which are characterized by a specific baryonic charge B = +1
and are called baryons. Baryons, except protons, are generally low-
stability particles. Antibaryon charge B = –1. Electrons, neutrinos, and
antineutrinos are not part of the nucleus, but take an active part in
intranuclear processes caused by weak interactions (see section 1.2.2).
The sum of the number of protons Z and the number of neutrons N in the
atomic nucleus is called the mass number A. Since all atoms without
exception are electrically neutral, the number of protons in the nucleus Z
is always equal to the number of electrons of the atom. The number of
protons and neutrons in the light and middle atomic nuclei are
approximately equal. As the mass number of the atomic nucleus
increases, the electrical repulsion of protons increases, which is
compensated by the increase in the specific neutron content in the atom.
For example, the number of neutrons in the nucleus of a uranium atom
with a mass number of 238 is 146, but the number of protons is only 92.
As the mass number of the atomic nucleus increases, its instability
gradually increases. At present, only about 105 relatively stable atoms are
known, and the lifetime of the last atoms in the Periodic table is quite
short. Atoms with the same number of protons but a different number of
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neutrons are called isotopes. The stability of the isotopes is lower than
that of the atoms themselves and decreases rapidly as the number of
neutrons in the nucleus increases. Each atom has one to several relatively
stable isotopes, which are mixed in very small fractions with the main
atoms. This explains the non-numerical value of the atomic masses of the
elements in the Periodic table.

In addition to protons and neutrons, atomic nuclei also include a
large group of low-stability elementary particles, the so-called mesons,
participating in one way or another in intranuclear interactions.
Electrically, mesons can be either charged or neutral. The mass of mesons
fluctuates within a wide range. At first it was thought to be between the
mass of the electron, which is 9.1∙10-31 kg (0.51 MeV/s2), and the mass
of the proton. However, later it turned out that the mass of the
overwhelming number of mesons is greater than the mass of the proton,
exceeding it by several times. In some cases, it is even more than an order
of magnitude. The spin of mesons is integer or zero, i.e. mesons, unlike
nucleons, are bosons.

One of the most important properties of strong interactions is their
isotopic invariance, that is, their independence from the charge state of
nucleons. This means that both two protons and two neutrons, or a proton
and a neutron, interact in the same way. Strong interactions are also
characterized by a very small radius of action, equal to about 10 -15 m.
They result from the exchange of nucleons by pi-mesons, also called
pions. Pions are part of the so-called meson "cloud" with which nucleons
are always shrouded The existence of pions was postulated in order to
explain the short-range effects of nuclear forces by the Japanese physicist
Hideki Yukawa in 1935. Pions were experimentally detected in 1948 -
1950 at the particle accelerator in Berkeley (USA). Pions have spin zero
and are a group of bosons consisting of three elementary particles, two
electrically oppositely charged and one neutral. The mass of charged
pions is 140 MeV/s2, and the neutral one is 135 MeV/s2.
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Mesons and baryons belong to the class of hadrons. Hadrons are
elementary particles composed of smaller particles, quarks and
antiquarks. Quarks and antiquarks, in addition to the properties that
characterize all elementary particles, also have specific properties that are
described by special quantum numbers called flavor and color. In
addition, quarks are also characterized by quantum numbers called
strangeness (S), charm (C), and beauty (b). The concept of quarks was
introduced in 1964 by American physicists George Zweig and Murray
Gell-Mann. They assumed that all baryons are built from different
combinations of the three fundamental quarks, u, d, and s (see Table 7.3),
which differ from each other by their respective quantum numbers.
Mesons consist of a quark and an antiquark.

Table 7.3.

Flavors of Quarks u d s
Mass MeV/s2 4.1 5.12 8.7

kg 7,28 ∙ 10-30 9,1 ∙ 10-28 1,54 ∙ 10-29

Electrical charge in units of
electron charge

+ 2/3 – 1/3 – 1/3

Isotopic spin The quantity 1/2 0 1/2
Projection + 1/2 0 – 1/2

Spin 1/2 1/2 1/2
Baryon charge in units of
positron charge

1/3 1/3 1/3

Strangeness, S 0 0 – 1
Charm, C 0 0 0
Beauty, b 0 0 0

All hadrons are combined into one class and form a symmetry
invariant with respect to the transformations of internal quantum
numbers.

Quantum numbers, as mentioned above, are integers or fractions
that define possible values of physical quantities (states) of quantum
systems. The set of quantum numbers that comprehensively defines the
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state of a quantum system is called complete. It was shown above (see
section 7.4.1) that the state of an electron in an atom is determined by
four quantum numbers, which are eigenvalues of wave functions. For
example, the state of an electron in a hydrogen atom is determined by the
principal quantum number, the orbital quantum number, the magnetic and
spin quantum numbers. The same quantum numbers describe multi-
electron atoms with a certain approximation. In addition to these quantum
numbers, internal quantum numbers are also very important for
description of quantum systems. The effect of these numbers is
manifested in particle interactions. These include: conserved electric Q
and baryonic charge B, conserved with some approximation in strong
and electromagnetic interactions strangeness (S), charm (C), and beauty
(b). Internal quantum numbers also include weakly conserved isotopic
spin 𝐼 . In addition, elementary particles are also characterized by the
already known parity, which remains unchanged in all interactions.

The isotopic spin characterizes the isotopic symmetry
corresponding to the SU(2) group transformations and is part of the
unitary symmetry corresponding to the SU(n) group transformations.
Unitary symmetry is inherent to strong interactions and belongs to the
group of internal symmetries of quantum systems. The value n, which
characterizes the internal symmetry group, is the number of components
that make up all possible combinations of the group. Each such group
consists of similar particles with approximately the same masses and the
same internal quantum numbers, including - spin, parity, baryonic charge,
strangeness, charm, and beauty. Particles within each group with isotopic
symmetry differ from each other by electric charge and mass. These
groups are called isotopic multiplets. For example, nucleons form a
duplet,  pions  form a triplet, etc. The multiplicity N is the number of
members of the multiplet and is determined from the relation𝑁 = 2𝐼 + 1 (7.140)
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The value of isotopic spin is conserved for each group separately.
So, for example, for nucleons 𝐼 = 1/2, since N = 2, and for pions 𝐼 = 1,
since N = 3. Isotopic spin is a vector quantity. The projection of isotopic
spin 𝐼  is related to the electric charge of the particle Q by the Gell-
Mann–Nishijima formula by the following relation𝑄 = 𝐼 +  12 𝑌, (7.141)

where Y is the hypercharge of the particle.

Y = B + S + C – b (7.142)
Thus, if the isotopic spin vector is unchanged, its projection has

different values for each of the particles in the group. For example, for
nucleons the projection has two values of +1/2 and -1/2, and for pions
three values of +1, -1, and 0. Since the strong interaction does not depend
on the value of the electric charge, it can be formally interpreted as
invariance with respect to the rotation of the isotopic spin vector in
conditional isotopic (charge) space or as the existence of the symmetry
group SU(2). This group is defined by two varieties of quarks out of two.

Unitary symmetry, in turn, unites groups of isotopic symmetry,
(in our case different groups of hadrons), into one class. It reflects an
approximate symmetry with respect to changes in isotopic spin,
strangeness, and mass, and is described by the symmetry group SU(3),
since it is formed by the three above-mentioned varieties of quarks.
Despite the approximate nature of this symmetry and the great difference
between hadrons, especially fermions and bosons, it nevertheless allows
us to combine nucleons and mesons into one class due to the symmetry
of their composition. Based on SU(2) symmetry and the fact that the spin
of all quarks without exception is 1/2, the following quark model of
hadrons was created:

protons - udd

neutrons - udd
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π+ mesons - ud*

π-mesons - u* d

etc. (the letter with the asterisk at the top indicates the antiparticle).

The whole variety of hadrons arises from combinations of
different quarks and antiquarks that form bound states. In this case
hadrons, which are formed from 3 quarks, have a total half-integer spin
(1/2 or 3/2). These hadrons belong to the fermions and are part of the
group of baryons or antibaryons. As mentioned above, all baryons
without exception are assigned a baryonic charge equal to + 1, and
antibaryons are assigned with a charge equal to – (– 1), which
characterizes their interaction with each other. Hadrons consisting of 1
quark and 1 antiquark have a total spin equal to zero or 1. They belong,
respectively, to bosons and form a subclass of mesons. Due to the fact
that mesons do not interact with each other, but are only carriers of
interactions, their baryon charge is 0. The composition of hadrons also
explains the increased lifetime of baryons, whose structural elements are
bound by strong interactions, and the short lifetime of mesons, in which
the action of particles is compensated by the counteraction of their
antiparticles.

The electric charge of hadrons is known to be 0 or ±1. This means
that the charge of the quarks is half-integer, with the quarks of u type
assigned a charge of + 2/3, and quarks of d and s type - a charge of – (–
1/3). With this in mind

ep = + 2 / 3 + 2 / 3 – 1 / 3 = + 1

en = + 2 / 3 – 1 / 3 – 1 / 3 = + 0

eπ+ = – 2 / 3 – 1 / 3 = – 1

eπ– = – 2 / 3 – 1 / 3 = – 1
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The SU(3)-symmetry is based on the independence of the
interaction energy from the type of quarks that form hadrons.

All 3 quarks are characterized by the same spin equal to 1/2, the
same values of baryonic charge B = 1/3, charm C = 0, and beauty b = 0.

Baryons, as we have seen, consist of three quarks. Often two of
them, and sometimes all three, are the same. In the case of two identical
quarks, their spins are antiparallel, and the Pauli exclusion principle is not
violated. However, hadrons of three identical quarks could not be
realized, although in practice they exist. This led to the introduction of
another characteristic of quarks called color. The quarks, which are
identical in flavor, differ from one another in their color. Such a strange
name for this characteristic arose due to the fact that it is always absent
in hadrons. In other words, the quarks, when united, as it were,
compensate for their color, or, as they say, decolorize each other. The
mesons are simpler. They always consist of a pair - a quark and an
antiquark. Therefore, if one of them has a color, the other has an anti-
color, as a result the colors are mutually cancelled out. In baryons, not
two, but three quarks must be discolored. But it is the colors that have a
similar property. For example, red, green, and purple combine to give a
discolored white. Hence, by analogy, the name of this characteristic
arose. The notion of color also helped to explain the well-known fact that
quarks are undetectable in the free state. The fact is that the interaction of
quarks is carried out by their exchange of gluons, which, by analogy with
the quanta of the electromagnetic field, photons, are massless particles
with spin equal to 1. In this case the source of the field of strong
interactions by the same analogy is the color charge. However, the
specifics of the field of strong interactions, unlike the electromagnetic
field, is that the charge, in this case the color charge, is attributed not only
to interacting particles, fermions, in this case quarks, but also to particles
carrying the interaction, bosons, in this case gluons. This means that for
small distances, the effective color charge of quarks is compensated by
the color charge of gluons and, accordingly, decreases with decreasing
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distance. Therefore, at small distances quarks behave as quasi-free
particles. On the contrary, when two quarks are mutually removed, their
color charge and interaction energy increase so much that it leads to the
birth of a quark-antiquark pair, which decolorizes the separated quarks
and combines them into a colorless hadron. It follows that obtaining
quarks in the free state, at least at currently available and predictably
distant future energies, is in principle impossible.

Hadrons consisting of u, d, s quarks whose charms are zero cannot
be charmed. Therefore, the discovery of charmed mesons, mesons with
hidden charms, and charmed baryons led to the need to expand the family
of quarks, and to introduce the so-called charmed (c ≠ 0) and beautiful (b
≠ 0) quarks. At the same time, the existence of new families of hadrons
with SU(4) and SU(5)-symmetry was postulated. A four-quark hadron
was recently discovered at the Large Hadron Collider.

One of the most common structural models of the atomic nucleus
is the shell model. The nucleon of a nucleus, like the electrons of an atom,
are quantum particles. Each of them is in a particular quantum state
characterized by an energy level, i.e., the principal quantum number n,
the orbital moment J and its projection m on one of the coordinate axes,
spin, parity, etc. According to Pauli's exclusion principle, each energy
level can contain 2 (2J + 1) identical nucleons, forming a nucleon shell,
so that a completely filled shell would contain 2 n2 nucleons. However,
unlike the shells of the atom, which consist of the same particles,
electrons, nucleonic shells are formed by different particles and therefore
we distinguish between proton and neutron shells separately. As a result,
the laws of shell filling by nucleons, which are present for atoms, are
violated.

The number of protons and neutrons in the nuclei is determined
by a series of so-called magic numbers. For neutrons they are 2, 8, 20,
28, 40, 50, 82, 126, and for protons they are 2, 8, 20, 28, 50, 82. Nuclei
with both the number of protons and the number of neutrons as magic
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numbers are particularly stable and strong, reminiscent of the chemical
stability of noble gas atoms. The magic numbers observed in the
experiment correspond to quantum states of quasiparticles moving in a
rectangular potential well with spin-orbit interaction.

In a completely filled shell, the moments of nucleons are mutually
compensated, and the total momentum of the shell, as well as their spin,
is zero. In each case, when the number of neutrons or protons in the shell
becomes equal to the number of completely filled shells, there is a jump
change in some characteristics of the nucleus (e.g., bonding energy),
which is equivalent to the law of periodicity of changes in the properties
of atoms. This is also indicated by many of the magic numbers, such as
2; 8; 20(18+2); 28(20+8); 82(32+32+18), etc. The shell model also made
it possible to explain the spins and magnetic moments of nuclei.

It should be emphasized, however, that the shell structure of
nuclei is much weaker than that of atoms. This can be explained, first, by
the absence of a cementing central force in the nucleus, which results in
increased mobility and mutual collisions of nucleons, and, second, by the
fact that the motion of nucleons can be discussed with even greater
convention than the motion of electrons.

The nucleons in the nucleus create a collective formation in which
the individual properties of each individual nucleon are so weak that they
are rather contingent. This made it possible, by analogy with the crystal
structure of metals, to complement the shell model with the so-called
generalized model, according to which the nucleus has a sufficiently
stable framework consisting of filled shells. The remaining outer
nucleons that did not enter the framework form a Fermi liquid, which in
the ground state is treated as an ideal Fermi gas. In the excited state, one
or two quasiparticles move to higher energy levels. By releasing orbits
inside the fermionic sphere, they can interact both with each other and
with the resulting hole in the lower shell. The hole, in turn, can move,
going from one state to another. The difficulty of the theory is that the
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interaction of quasiparticles and holes is actually quite large, which
contradicts the initial statements and can lead to inaccurate final results.
To increase the accuracy of the theory, the method of successive
approximations is used, which consists in considering the motion of
quasiparticles only as the first approximation, and the subsequent
approximations are obtained using empirically chosen model parameters.

7.4.10.1. Intranuclear processes.
One of the important characteristics of a nucleus is its mass, which

is determined by the mass of its constituent nucleons. However, the total
mass of nucleons bound in the nucleus is always less than their total mass
in the free state. This is not surprising, since, according to the definition,
mass is a quantity proportional to the lag time of transmission of
interactions. In the case of a bound state of particles, the value of this time
is always less than in their free state. The difference of these masses Δm
is called a mass defect. It follows that the absolute value of Δmc2

determines the binding energy, i.e., the amount of work that must be
done to transfer nucleons from a bound state to a free state. Since the total
mass of the decaying particles increases, their equivalent energy also
increases. In other words, the decay process is accompanied by energy
absorption. On the contrary, energy is released during fusion, i.e., the
joining of free nucleons into a nucleus.

From this point of view, we can conventionally assume that all
types of energy are divided into positive energy of relative motion of
structural elements of loosely connected systems, which is a measure of
motion of these elements, and negative energy of connection of elements
connected into a system, which determines, on the contrary, the measure
of their relative immobility. In this sense, gravitational energy or
mechanical potential energy is bonding energy, and kinetic energy or
internal energy of motion of particles is energy of motion. If we denote
the binding energy Ɛb, the masses of the proton, neutron, and nucleus,
respectively mp, mn, mN, then
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Ɛb = [Zmp+(A – Z) mn – mN] c2.

The amount of binding energy per nucleon is called the specific
binding energy. Figure 7.28 shows a graph of the dependence of the
specific binding energy on the mass number (the number of nucleons in
the atom). The graph shows that for the vast majority of nuclei, the
specific binding energy is between 8 and 9 MeV/nucleon.

Only for a small number of light nuclei and nuclei with a large
mass number is it significantly smaller. The nuclei of the elements at the
end of the Periodic table are less stable, and very heavy nuclei are
unstable.

Figure 7.28.

There are two possible ways of releasing energy (obtaining
nuclear energy) during intranuclear processes: the fusion of light nuclei
that we discussed above, and, on the contrary, the fission of heavy nuclei.
In both cases, nuclei with higher specific bonding energies and,

Ɛu, MeV/nucleon
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consequently, lower nucleus energies are formed, which entails a mass
defect and excess nuclear energy.

Low-stable isotopes of stable nuclei, as well as heavy, low-stable
nuclei, are subject to spontaneous radioactive decay, in which the nuclei
of some chemical elements, called the parent radionuclide, are
transformed into the nuclei of other elements, called the daughter
nuclide. The process of radioactive decay is called radioactivity and is
usually accompanied by the emission of particles and quanta of
electromagnetic energy. A distinction is made between natural
radioactivity, which occurs in nature without human intervention, and
artificial radioactivity, produced by bombardment of nuclei with
energetic particles. In the latter case, nuclear processes are accompanied
by nuclear decay. The natural radioactivity of nuclei was discovered by
the French physicist Henri Becquerel in 1896, and the artificial one was
discovered by the Joliot-Curie couple in 1936.

Let us denote by N the number of nuclei of a given type at time t,
and by dN the decrease in the number of spontaneously decaying nuclei
over time dt. It is quite obvious that

– dN = λNdt,

where λ is the radioactive decay constant.

By integrating the last expression, we obtain𝑁 = 𝑁 𝑒 , (7.143)
where N0 is the initial number of nuclei;

The inverse of the radioactive decay constant, τ = 1/λ, is called the
lifetime of radioactive nuclei.

The intensity of the radioactive decay process is measured by a
value called the half-life T1/2. The half-life is the time during which half
of the initial number of nuclei decays. According to this definition
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𝑁2 = 𝑁 𝑒 / ;  𝑇 / = ln 2𝜆 ;   𝜏 = 𝑇 /ln 2.
The half-lives of various radioactive elements vary widely, from

10-7 s to 1010 years or more.

Depending on which particles or quanta of energy are emitted in
the radioactive decay of nuclei, a distinction is made between α-decay,
which emits nuclei 𝐻𝑒  called α-particles, β-decay, which emits
electrons called β-particles, and γ-decay, which emits hard γ-rays, i.e.
high energy photons.

To write the equations of nuclear processes (reactions) we denote
nuclei by 𝑋. Let us also denote α-particles by the symbol for helium
nuclei, β-particles by the symbol for electrons. Finally, we denote
neutrons by n, protons by p, neutrinos by ν, antineutrinos by ν*. On the
bottom left of the notation of charged particles we will indicate the value
and sign of their charge, and for neutral particles we will indicate 0. On
the top left of the particle notation we will indicate its mass number, and
for leptons and antileptons (electrons, neutrinos, etc.) we will indicate 0.
Let us also call the original (decaying) nucleus the parent nucleus, and
the nuclei obtained during the decay of the mother nucleus the daughter
nuclei. Nuclear reactions occur in this case according to the
displacement rule, according to which the value of the total charge Z
and the mass number A of the daughter nuclei must equal the value of
these values of the parent nucleus.

During α-decay, according to the rule of displacement, the charge
of the daughter nucleus decreases by 2 units (the charge of the helium
nucleus), and the mass number decreases by 4 units. The nuclear reaction
of decay, e.g. of a uranium nucleus, looks like 𝑈 →   𝐻𝑒 +   𝑇ℎ, (7.144)
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In some cases, alpha decay is also accompanied by the emission
of a γ-quantum energy. In all cases, the emission of alpha particles is
associated with the tunnel effect.

The nuclear reaction in the β-decay of, for example, radioactive
cobalt, by analogy and taking into account the displacement rule, can be
written as follows 𝐶𝑜 →   𝐵𝑁𝑖 +      𝑒 +  𝜐∗ + 𝛾, (7.145)

As can be seen from the above reaction, in β-decay the nucleus
emits an electron and antineutrinos, which are not contained in it, but are
born during the reaction itself. As will be shown below, this decay is a
consequence of the weak interaction, in which the neutron transforms into
a proton with the emission of an electron and an antineutrino. The result
of this is the emergence of the nickel atom, whose daughter nucleus
contains one more proton and one less neutron than the parent nucleus of
the cobalt atom, while maintaining the mass number. Unlike α-decay,
which has a discrete energy spectrum, in β-decay it is continuous. In
positron decay (we recall that the positron is an antielectron), the mother
nucleus transforms into the daughter nucleus, emitting a positron and a
neutrino. In the process of positron decay, a positron and neutrino are
produced, which is equivalent to the transformation of a proton into a
neutron, as opposed to electron decay. Another type of β-decay is
associated with the capture by the nucleus of an electron from the nearest
K-shell of the atom (K-capture). When united with one of the protons of
the nucleus, the captured electron transforms it into a neutron and emits
a neutrino.

It is interesting to note that it is the β-decay that is associated with
the history of neutrino discovery. The point is that, as the measurements
showed, the total energy of the original particles was always greater than
the energy of the particles produced in the decay process. In other words,
beta decay violated the law of conservation of energy, some of the energy
disappeared somewhere silently. Analyzing the situation, Pauli
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hypothesized in 1932 that beta decay gives birth to another neutral very
small particle, the neutrino, with a spin of 1/2 and a rest mass equal to
zero, which does not remain in the nucleus, but is carried away from it at
the speed of light. Due to the enormous penetrating power of neutrinos,
it was not detected for a long time. Only in 1956, its existence was
confirmed experimentally by American physicists Frederick Reines and
Clyde Cowan. Research by Soviet physicists in the 1980s, confirmed by
a number of American physicists, indicates that the neutrino rest mass is
not zero and is in the range of 10-30 MeV/s2. However, these data are not
yet considered completely reliable.

Gamma radiation arising from the radioactive decay of atomic
nuclei is in the short-wave part of the spectrum and is characterized by a
wavelength of 10-10 m. The passage of γ-rays through matter is
accompanied by an internal photoelectric effect, Compton scattering, and
photoproduction of particle-antiparticle pairs. The photoelectric effect
arises as a consequence of the interaction of a γ-quantum with the
electrons of the atom's inner shells, so it results in X-rays. Compton
scattering appears only at gamma-quantum energies of the order of 2
MeV and leads to the absorption of gamma rays by matter. At energies
higher than 1.1 MeV, an electron-positron pair birth is also possible.

The effects of radiation on matter, including living organisms, are
characterized by the dose of radiation absorbed and the permissible dose
at which irreversible destruction of the substance or organism does not
yet occur. The absorbed dose is the amount of absorbed energy per unit
mass of the irradiated substance. The unit of absorbed dose is 1 gray (Gy)
= 1J/kg. The smaller unit is 1 rad = 10-2 Gy. Direct measurement of the
absorbed radiation dose is not possible, so we measure the associated
amount of ionized substance charges that arise under its exposure,
which is called the exposure dose of radiation and is measured in Cl/kg.
The unit of exposure radiation is 1 Cl/kg or 1 roentgen (1 R), equal to
2.58 ∙ 10-4 Cl/kg, which corresponds to the formation of 2.08 ∙ 103 ion
pairs/m3. The absorbed dose of radiation produces different biological
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effects depending on the type of radiation, so the value of the coefficient
of relative biological effectiveness (RBE) in relation to the effect of γ-
radiation is also introduced. The unit of RBE is 1 roentgen equivalent
man (rem) = 10-2 J/kg and is equal to a radiation dose that produces the
same effect as 1 R of gamma radiation.

The energy spectrum of γ-radiation is discrete and, according to
the uncertainty relations, its levels are broadened by the value of Δℇ = ℏ,
where τ is the duration of a nucleus in a state with a given energy. As in
the case of the atom, the level of the unexcited, ground state does not
broaden. The uncertainty of the energy of excited states leads to non-
monochromaticity of the radiation, which is called the natural width of
the emission line.

In 1958, the German physicist Rudolf Mössbauer established that
it is possible for atomic nuclei bound in a solid to absorb or emit γ-rays
without changing the internal energy of the body. This is explained as
follows. When a nucleus emits or absorbs a γ-quantum, the system
containing the nucleus acquires a recoil pulse, with the emission and
absorption lines shifting in different directions from the main line
corresponding to the given quantum transition and broadening. The recoil
energy turns into the energy of thermal fluctuations of the crystal lattice,
which are equivalent to the set of additional phonons born in this process.
When the recoil energy per nucleus is less than the average energy per
phonon of a given crystal, not every act of absorbing a γ-quantum results
in a phonon birth or, similarly, in a change in the internal energy of the
body. This phenomenon is called the Mössbauer effect or nuclear
resonance. The resonance absorption of gamma rays is strongly expressed
if the energy of oscillatory motion of the crystal lattice is not
superimposed on it, and the recoil energy is transferred not to a single
nucleus, but to the lattice as a whole. The broadening of the emission lines
is natural in this case and is exceptionally small, on the order of 10-10 eV.
The probability of nuclear resonance increases as the energy of the γ-
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transition decreases, as the temperature of the crystal decreases.
Therefore, to observe it, the temperature of the crystal is reduced to the
temperature of liquid helium or liquid nitrogen. Due to its high
sensitivity, the Mössbauer effect has been widely used to measure small
energy shifts of γ-rays caused by various influences on the emitting or
absorbing nucleus.

7.4.10.2. Nuclear reactions.
Nuclear reactions differ in:

 - the type of particles involved - neutrons, charged particles
(protons, electrons, deuterons, tritons, α-particles), γ-quanta, π-mesons,
etc;

 - the nature of the nuclei causing the reaction, i.e., reactions
occurring on light nuclei with a mass number A up to 50, on medium
nuclei when 50<A<100, or on heavy nuclei when A >100;

 - particle energies; at low energies, on the order of 1 eV, medium
energies, up to 100 MeV, high energies, over hundreds and thousands of
MeV;

 - the nature of nuclear transformations - with emission of
neutrons, with emission of charged particles, with emission of γ-quanta,
with scattering of particles, nuclear fission and fusion.

Reactions induced by neutrons are of particular importance.
Unlike charged particles, neutrons do not experience Coulomb repulsion
from the nuclei they bombard, so they easily penetrate nuclei and are most
effective in terms of the nuclear reactions they cause. A distinction is
made between fast neutron reactions, which have a de Broglie
wavelength shorter than the nucleus radius and an energy of 0.1-50 MeV,
and slow neutron reactions, which have an energy of no more than 100
keV. Thermal neutrons with energies from 0.005 to 0.5 eV, cold neutrons
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with energies 10-3 to 10-4 eV, and ultracold neutrons with energies 10-7 to
10-8 eV are also distinguished.

When fast neutrons collide with a nucleus, there is a scattering-
type reaction, where the absorbed neutron corresponds to the emitted
neutrons, or a reaction with the formation of charged particles. The return
of an excited nucleus to the ground state is accompanied, as a rule, by γ-
radiation.

Nuclear reactions under the action of slow neutrons are the most
effective, and from the point of view of nuclear energy generation, the
fission reactions of heavy nuclei are of primary interest.

The fact is that the daughter nuclei arising in the process of fission
are the nuclei of the middle elements of the Periodic Table. Each contains
a relatively smaller number of excess neutrons than the original heavy
parent nucleus. As a result, the fission products may contain more than
one neutron per decayed original atom. Each of these neutrons, in turn,
causes nuclei fission so that there is more than one primary neutron per
atom fission, etc.

The process of fission under the influence of neutrons occurs as
follows. Let a heavy nucleus capture a neutron and get excited. As a result
of excitation, the nucleus can emit a γ-quantum and return to the initial,
ground state. However, much more often it deforms and, under the
influence of the Coulomb proton repulsion forces, disintegrates into two
fragments of unequal masses, which, as already mentioned, are saturated
with excess neutrons and are, therefore, unstable. The fragmented nuclei
thus excited emit excess neutrons, which are called secondary neutrons,
and go to a steady state.

The number of secondary neutrons per fission is different for
different nuclei. For the 235U nucleus, for example, it is quite large and
averages 2.5 to 3. At the same time, thermal nuclear energy Q is released,
which is calculated by the following formula
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𝑄 = (𝑀 + 𝑚 ) − 𝑀 + 𝑀 + 𝑚 𝑐 , (7.146)
where MX, MY1, MY2 are the masses of the parent and daughter nuclei;

mx, my are the masses of primary and secondary particles.

For the 235U nucleus, which decays into 140Ce and 94Zr nuclei with
one primary and two secondary neutrons, Q = 208 MeV. (For
comparison, chemical combustion reactions emit only 4 MeV, and α-
decay emits 5 MeV.)

Fission reactions also benefit from the fact that they can be chain
reactions, i.e., self-sustaining. If one primary neutron gives rise to at least
two secondary neutrons, which in turn give rise to four tertiary neutrons,
etc., the result is a spontaneous avalanche-like increase in the number of
fissile nuclei, and the reaction proceeds with an instantaneous increase in
intensity. It should be kept in mind, however, that not all neutrons cause
fission, as some of them leave the core, where fission occurs, before they
are captured by fissile nuclei, or get into the fissile atoms of the core's
structural materials. In addition, some neutrons cause radiation capture
instead of fission, etc. In this regard, an important characteristic of a chain
reaction is the so-called neutron multiplication factor K,  which  is
defined as the ratio of the number of neutrons in a given generation to its
number in the previous generation. Let in a given generation the number
of neutrons is N, then in the next generation it is KN. Therefore,𝑑𝑁 = 𝑁(𝐾 − 1)Δ𝑡 𝑑𝑡.

By integrating, we get𝑁 = 𝑁 𝑒( ) , (7.147)
where Δt is the average lifetime of one neutron generation.

If K < 1, then N < N0 , and division stops with time. This
corresponds to the attenuating mode of the reaction. At K > 1, the reaction
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builds up avalanche-like, and energy is released in the form of an
explosion. This mode is implemented in the atomic bomb. Finally, when
K = 1, the reaction is stably self-sustaining. This mode is called critical
and is implemented in so-called nuclear reactors. Critical mode
characteristics (size, mass, etc.) are also called critical characteristics.

A distinction is made between controlled and uncontrolled chain
reactions. In the uncontrolled reaction of an atomic bomb (warhead) its
active volume is divided into two parts, which are mutually separated.

The mass of each part must be lower than the critical mass, i.e.
correspond to the attenuating, so-called subcritical mode. The weight of
the parts is chosen so that when they are combined, the total mass is
greater than the critical mass. Primary neutrons are created by the natural
radioactivity of nuclear fuel (fissile material), which is 235U or 239Pu (the
process of obtaining naturally inexistent 235U from naturally occurring
238U is called uranium enrichment).

Devices with a controlled chain reaction designed to produce
atomic energy used for industrial and domestic purposes are called
nuclear reactors. A nuclear reactor consists of a core containing nuclear
fuel (fissile material), a moderator, a reflector, a cooling system, a control
and protection system, and a control panel. As nuclear fuel, reactors use
pure and highly or not highly enriched nuclides (heavy nuclei) 235U,
239Pu, 233U. The core is usually made as a set of fuel elements (fuel rods)
in which nuclear fuel is placed. This is where nuclear fission takes place.
The heat that is released during the fission reaction is removed from the
fuel rods by washing them with heat transfer medium. Heat transfer
media can be water, heavy water, gas, liquid metal and also organic
substances. Helium or carbon dioxide is used as gas heat transfer
medium. Sodium, alloys of lead with bismuth or sodium are used as the
liquid-metal ones. Gasoil, biphenyl, biphenyl mixtures, etc. are organic
media. Circulating in a special circuit placed in the core, the heat transfer
medium is heated and transmits heat to the working body, most often
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water. In so-called homogeneous reactors, the heat transfer medium is a
homogeneous mixture of nuclear fuel and moderator in the form of a
suspension or liquid solution. In heterogeneous reactors, the nuclear fuel
is in the form of rods, tubes, blocks, etc., which are not in contact with
the moderator and heat transfer medium and are distributed among
reactor parts made of other substances. The core is surrounded by a
neutron reflector designed to reduce neutron leakage and equalize heat
release over the volume of the core. The reflector materials used are the
same as those used for heat transfer media or special substances. The
moderator is designed to convert the fast neutrons born in the fission
process into slow or thermal neutrons. Graphite, heavy water (D2O),
beryllium, or its oxides are used as moderators. The reactor is controlled
by moving rods of cadmium or boron, which are strong neutron
absorbers. The deeper the rods are pushed into the core, the lower the
intensity of the nuclear reaction and the reactor power. The movement of
the rods is controlled automatically. In the event of an emergency, the
rods automatically retract fully and the nuclear reaction stops.

The process of nuclear fission is accompanied by the production
of radioactive daughter nuclei, the emission of energetic neutrons, as well
as α, β and γ radiation. To protect people and equipment from radioactive
radiation, the reactor is submerged in water to a depth of about 1 m and
encased in a thick concrete casing.

Both fast- and slow-neutron reactors are currently in use.

The synthesis of light nuclei, as was shown above, is also
accompanied by the release of energy, which, moreover, exceeds the
corresponding fission energy per nucleon by more than 4 times. It is also
essential that there may not be any neutron emission and associated
radioactivity during fusion. At the same time, nuclear fusion also poses a
serious problem related to the need to overcome the Coulomb repulsion
of protons. For example, in order to unite two deuterium nuclei, they must
be brought closer together to a distance of 2 ∙ 10-15 m. The potential
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energy of Coulomb repulsion at this distance is 10 keV. This corresponds
to a temperature of about 2∙108 K.  This  reactions  are  called fusion
reactions. The first uncontrolled fusion reaction of deuterium and tritium
nuclei into helium was carried out in the form of a hydrogen bomb
explosion in the Soviet Union in 1953. It used a synthesis reaction
according to the following scheme𝐷 +  𝑇 →  𝐻𝑒 +  𝑛 +  17,6 𝑀𝑒𝑉 (7.148)

The temperature necessary for the fusion reaction to take place
was created by the preliminary explosion of a small atomic bomb, thus
serving as the detonator of the hydrogen bomb. The fusion energy heated
the plasma to a very high temperature, at which the fission chain reaction
of the bomb shell, made of low-deficit 238U, began. The result was an
explosion that was many times more powerful than an atomic bomb. This
explosion was also accompanied by intense radioactive emissions. The
source of tritium, which, because of its radioactivity, is practically absent
in nature, was the reaction of its reproduction from the lithium deuteron
when irradiated with 6Li neutrons according to the following scheme 𝐿𝑖 + 𝑛 =  𝑇 +  𝐻𝑒

The thermonuclear fusion reaction of hydrogen nuclei is a source
of solar energy. This reaction is very slow with little heat release. This
disadvantage, which makes this reaction inapplicable in terrestrial
conditions, is compensated for in the Sun by the huge size of the solar
reactor.

The high temperature of the fusion reaction is one of the reasons
why it has not yet been possible to realize a controlled fusion reaction on
an industrial scale. The problem is not only to create, under earthly
conditions, such a high temperature at which all substances turn into
plasma, but also to keep this plasma in the vessel in a stationary state.
First, the contact of the high-temperature plasma with the walls of the
vessel leads to its almost instantaneous cooling, and second, it just as
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quickly destroys the vessel, turning it into plasma. In addition, a fusion
controlled reaction in general only makes sense if it is energetically
beneficial, that is, if the resulting fusion energy is greater than the energy
expended to excite the high temperature and contain the plasma. The
conditions necessary for the realization of a regulated self-sustaining
thermonuclear reaction are called the Lawson criterion. The
characteristics of this criterion are the plasma confinement parameter nτ,
(where n is the concentration of particles in the plasma during its
confinement time τ) and the plasma temperature T. Calculations have
shown that for the passage of a controlled fusion reaction at a temperature
T =  2  ∙ 108 K and the synthesis of a mixture of deuterium - tritium is
provided under the condition that nτ >  1014 c/m3. Tritium is produced
using a small atomic reactor.

The lower limit of the plasma dispersal time in the absence of
plasma confinement devices and a concentration comparable to the
concentration of atoms in the volume of a solid body allows a nuclear fuel
fusion reactor to be made in the form of small grains. Laser pulses of
about 50 GW, joule heat of electric current, heat generated by
electrodynamic plasma compression, high-frequency heating,
bombardment of nuclei with fast particle beams, or electron beams can
be used to heat the nuclear fuel to the desired temperature.

Keeping plasma inside the vessel, according to the idea of Soviet
physicists Igor Tamm and Andrei Sakharov, is done by isolating it
relative to the walls of the vessel (pushing it away from the walls by a
powerful magnetic field). This idea was put into practice in fusion
reactors such as Tokamak, Torsatron, and Stellarator. The name of the
reactors is related to the way the plasma is heated and the insulating
magnetic field (toroid, coil, magnet) is created, as well as its stabilization.
Plasma in these reactors is created inside a toroidal coil or chamber by an
electric current flowing through the coil, and the magnetic field by a
magnet or two toroidal current windings (the field of one pulls the plasma
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away from the toroidal chamber walls, while the other, helical, stabilizes
the plasma cord).

The biggest disadvantage of first-generation reactors is their
radioactivity. More promising are reactors that use mixtures of deuterium
and helium three or hydrogen-boron as a fuel. In these reactors, the fusion
reaction is neutron-free and their radioactivity is close to zero.

7.4.11. Elementary particles

Elementary particles include structural elements of physical fields
and atoms of physical bodies, as well as some particles that fill
interatomic, intermolecular, and interstellar spaces. They were called
elementary because at first they were considered to be structureless point
formations (see Sections 1.2.1., 1.2.2.). Although, from a modern point
of view, real objects can be neither structureless nor pointless, their name
has been preserved.

The number of varieties of elementary particles discovered to date
is more than 350, and with the increasing power of the particle
accelerators with which they are studied, more and more particles are
discovered. However, all elementary particles differ little from each other
and are combined into a small number of groups of similar particles.

As it was mentioned above (see section 7.4.2.1.) elementary
particles depending on the parity of the wave function describing them
are divided into particles (antiparticles) of matter (fermions) with odd
wave function and half-integer spin and into field particles (bosons) with
even wave function and even as well as zero spin (see also section 7.5.).
Fermions, unlike bosons, interact with each other, with their interactions
carried by bosons. Depending on which fundamental interactions they
participate in, all fermions are divided into two groups of similar particles
- quarks (antiquarks) and leptons (antileptons). Quarks participate in all
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fundamental interactions, leptons do not participate in strong interactions,
and neutrinos are also not involved in electromagnetic interactions.

 There are three families (generations) of fermions (antifermions).
Each family consists of two leptons (antileptons) - (electron, electron
neutrino), (muon, muon neutrino), (tau lepton, tau neutrino) and two
quarks (antiquarks) - (u,d), (c,s), (t,b). In the conventional notation for
elementary particles, these families are given below.

1st family 2nd family 3rd family
e– (e+) μ– (μ+) τ– (τ +)
υe (υe

*) υμ (υμ*) υτ (υτ*)
u (u*) c (c*) t (t*)
d (d*) s (s*) b (b*)

The muon and tau-lepton of the second and third families are
extremely similar in their properties to the electron, but differ from it in
their much larger mass and very low stability. On the contrary, the muon
and tau neutrinos, while also maintaining high stability, like the electron
neutrino, have much higher mass. The same can be said about quarks of
different families. It is also characteristic that as the family number
increases, the masses of similar particles increase. The simplest
explanation for the existence of different families of fermions comes
down to the assumption that quarks and leptons are composite particles
and all subsequent families (generations) are excited states of the first
family. Although the structural nature of elementary particles is not in
doubt, the composite nature of leptons and quarks remains highly
questionable and unconfirmed.

The entire substantive atomic Universe is formed by particles of
the first family. In particular, protons and neutrons, which form the nuclei
of all atoms, are, as mentioned above, hadrons composed of different
combinations of 3 (u,d)-quarks, and pi- mesons, which participate in their
interaction, are also composed of two (quark-antiquark) (u,d)-quarks.
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Electrons are part of all atoms and, in addition, together with the electron
neutrino, participate in all weak interactions.

The role in the Universe of particles of the second and third
families, as well as their compounds (baryons and mesons, which include
quarks and antiquarks from the second and third families), has not yet
been established.

Four kinds of bosons correspond to the four fundamental
interactions - gluons (particles carrying strong interactions), photons
(carrying electromagnetic interactions), vector bosons (carrying weak
interactions), and hypothetical gravitons (carrying gravitational
interactions). In addition, pi-mesons, which are bosons with zero spin,
also take part in the transfer of strong interactions. It is possible that
mesons result from the emission of baryons during their transitions from
excited states, similar to the way photons are emitted by electrons during
similar transitions in the atom.

Elementary particles, due to their extremely small size (less than
10-15 m) cannot be directly observed. However, very reliable methods
have now been developed for their indirect observation and study of their
properties. As early as 1912, the English physicist Charles Thomson Rees
Wilson invented a device for observing not the particles themselves, but
the traces of charged particles (tracks), which was called the Wilson
cloud chamber after his name, or just a cloud chamber. The principle of
operation of the Wilson cloud chamber is based on the phenomenon of
condensation of supersaturated steam (see Section 2.7.3.3) on (ions), and
the formation of liquid droplets along the trajectory of the charged
particle movement. Particle tracks are photographed by several cameras
to obtain a stereoscopic (three-dimensional) image. The cloud chamber is
placed in a magnetic field, which, depending on the charge and
momentum of the particle, curves its trajectory, and, consequently, the
track, accordingly. The nature of a particle and its properties are
determined by the magnitude of its path, the radius of curvature of the
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trajectory, momentum, etc. The momentum P is determined by the
formula 𝑃 ⋅ 𝑐 = 𝐻𝑟cos 𝜑,
where H is the magnetic field strength;

r is the radius of curvature of the trajectory;

φ is the angle between the field and momentum directions

c is the speed of light in a vacuum;

The Wilson cloud chamber was replaced in the 1950s by the more
advanced bubble chamber. The principle of operation of this chamber is
based on boiling of superheated liquid (see item 2.7.3.3.) near the particle
trajectory. When a charged particle passes through a superheated liquid,
a track appears along its trajectory, consisting of nucleated boiling centers
and bubbles formed on them, reaching the size of 30-300 μm. Tracks are
photographed when they are illuminated by a pulsed light.

The advantage of the bubble chamber over the Wilson chamber is
that it allows one to register the acts of interaction of the particles under
study with the nuclei of the working liquid, as well as the acts of decay
of the particles in weak interactions. Liquid hydrogen or deuterium,
mixtures of neon and hydrogen, propane, freon, xenon mixed with
propane, etc. are used as the working fluid. Atomic nuclei of the working
fluid play the role of a target. The properties of particles are determined
by the magnitude of curvature of their trajectory in the magnetic field, the
thickness and length of track lines, etc.

Charged particle accelerators are a powerful means of studying,
producing, and detecting new elementary particles. American and Soviet
physicists (Ernest Lawrence, Donald William Kerst, Vladimir Veksler,
Edwin Mattison McMillan, etc.) participated greatly in the development
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of such particle accelerators. In particle accelerators, charged particles are
accelerated using an electric or electromagnetic field of high frequency
to very high speeds, and then collide with a target or at opposite speeds
collide with each other, and then are directed to a bubble chamber, where
their tracks are photographed. Particle accelerators are mainly used to
accelerate electrons, protons, and heavy ions. A distinction is made
between resonant and nonresonant particle accelerators. The most
promising are resonant particle accelerators (or resonators), in which
particles are accelerated by a high-frequency electromagnetic field, and
the accelerated particles move in resonance with changes in the field.
There is also a distinction between linear particle accelerators, in which
the accelerated particles move in a straight line, and cyclic particle
accelerators (cyclotrons), in which they move in a circle. In modern cyclic
particle accelerators, particles are accelerated to high speeds by
repeatedly passing through an accelerating field. Synchronization of
particle motion with a change in the field is performed by the autophasing
method (synchrophasotrons, etc.). In the latest generations of particle
accelerators, particles are collided in counter beams. Such particle
accelerators are called colliders. As a result, it is possible to accelerate
the particles to near-light velocity.

In 2012, the Large Hadron Collider at CERN discovered the new
so-called Higgs particle, which was predicted by Peter Higgs in the
framework of standard quantum theory in the middle of the last century.
This is considered great luck, because thanks to this discovery quantum
theory received another very important experimental confirmation. With
the help of the Higgs particle it was possible, in particular, to explain the
nature and magnitude of the masses of all elementary particles.

7.5. Quantum statistics

It has been repeatedly emphasized that the properties of
macrobodies are determined by the properties of their microstructure. The
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branch of physics that studies the properties of macrosystems, i.e.
systems consisting of a huge number of identical particles
(microstructures) and having therefore an equally large number of
degrees of freedom, through the properties of these particles and their
interactions, is called statistical physics. In section 1.3 we reviewed the
basics of statistical physics from a classical point of view. Here we will
also consider quantum statistics.

Usually, for simplicity, statistical physics studies isolated
macrosystems. Let us recall, however, that strictly isolated systems do
not exist in reality, since it is impossible to completely eliminate the
interaction of the system with the external environment. Therefore, an
isolated system is an idealization of reality. Realistically, we can speak
only about a quasi-isolated system whose energy is continuously
changing relative to some average value Ɛ with a variation ΔƐ << Ɛ. From
the quantum mechanical point of view, the system within the variation
ΔƐ passes from one quantum state, which is characterized by a discrete
energy level Ɛi , to another state with its energy level. These quantum
states are called possible microstates. Each given macrostate
corresponds to a huge number of microstates (energy levels) with a large
multiple of their degeneracy. Since, from the point of view of the
macrostate, the value of ΔƐ, within which all microstates are fit, is
extremely small, such transitions remain virtually invisible. The set of all
possible microstates for each given macrostate is called its static
ensemble. Statistical descriptions of isolated systems are called ergodic
descriptions.

As an example, let us consider a macrosystem in the form of some
gas with a volume of 10 -6 m3 under normal conditions. Transitions from
one microstate to another arise as a result of mutual collisions of gas
molecules. Let n be the concentration of molecules in the gas, and let ν
be the average collision frequency, then the number of collisions per unit
volume and time is
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NS = ν · n.

Since one mole of gas contains NA = 6,023 · 1023 molecules, and
the volume VM of one mole is found from the ratio𝑉 =  𝜇𝜌
where μ is the mass of one mole of gas;

ρ is the density of the gas,

then 𝑛 =  𝑁𝑉 = 𝜌𝑁𝜇
If we take hydrogen as a gas, then

ρ = 9 · 10 –2 kg/m3 , μ = 2 kg/kg-mole, n ≈ 1025 1/m–3

Substituting the values n and ν into the formula for the number of
collisions Ns, taking into account that under normal conditions the
frequency of mutual collisions of gas molecules

ν = 108 s–1,

gives 𝑁 = 10 1𝑚 𝑠.
The change of microstates in the unit volume occurs in time𝜏 = 1𝑁 = 10  𝑠.
It is in principle impossible to catch a change in the system in such

a short time, even with instruments that can be given the highest
imaginable accuracy and resolution. Static physics accepts a postulate
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called the ergodic hypothesis, according to which all microstates of an
isolated system corresponding to the same macrostate, or all members of
an ergodic ensemble, are equally probable. This means that in a
sufficiently long time interval the system passes through all microstates,
and in any averaged time interval it is in each of them equally often. It
follows that the probability of macrostates of an isolated system is
proportional to the number of microstates through which these
macrostates are realized. Mathematically it can be written as follows

pj = CNj, (7.149)
where pj is the probability of the j-th microstate;

Nj is the number of corresponding microstates.

The value dS, proportional to the relative probability of a
microstate dp / p, the Austrian physicist Ludwig Boltzmann called the
entropy of the system. As a result of integrating the value of𝑑𝑆 = 𝑘 𝑑𝑝𝑝
we get that

S = k ln p. (7.150)
This expression is called the Boltzmann entropy formula.

The set of probabilities pj is called a statistical distribution, and
the equation (7.150) is called a microcanonical distribution. Since in each
microstate the system is characterized by a well-defined value of the
microcharacteristic qi, the ensemble average value of this characteristic
Q can be written through the statistical distribution as follows

𝑄 = 𝑝 𝑞
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This raises the question of how many microstates Nj are realized
by the macrostate Q.

To answer this question, we consider the following simple
example. Let's number the 10 balls and consider the number of ways to
stack them in forward and reverse order. Then we get the most ordered
sequence of all possible sequences. It can obviously only be realized by
the combination С  = 1. Let's break the order so that one of the balls, for
example the 10th, is stacked arbitrarily. This can be accomplished in 10
ways by the combination С  = 10. A smaller order corresponds to more
options for its possible implementation. Further violation of the order for
two balls, for example the 10th and 9th, can be realized already 45 ways
by combinations С  = 45, etc.

The biggest disorder (chaos) will occur if you allow arbitrariness
in the stacking of half of all balls. This can be realized in 252 ways by the
combination С  = 252.

In this case, it is impossible to specify the rules of stacking,
because in any option of it the condition of arbitrary stacking of 5 balls is
satisfied. On the other hand, an arbitrary arrangement of balls makes the
system most homogeneous. In statistical physics, such a state is called
statistical equilibrium. Hence it follows that an ergodic ensemble
always tends to static equilibrium, which is characterized by complete
homogeneity, internal equilibrium and balance (see also sections 1.3 and
1.3.1).

Consider an isolated system in the form of an ideal gas and a
medium surrounding it. Since, by definition, there are no interactions
between particles of an ideal gas, we can apply to it the hydrogen-like
approximation of quantum mechanics that we discussed in Section 7.4.1.
The distribution of particles into one-electron quantum states is called
orbitals. Let's assume that the ideal gas we are considering is in thermal
and diffusion contact with the medium.
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The external medium in this case is called the thermostat, and the
gas is the working body or just a body. We denote the total number of
particles in the system by n0 and its energy by Ɛ0. We denote the number
of particles and energy of the body by n and Ɛ respectively. Let us suppose
that n << n0 and Ɛ << Ɛ0. The energy levels of the body is denoted by Ɛi,
and the multiplicity of degeneracy levels is denoted by qi. The value qi is
called the statistical weight of the levels. *

Let the body be at the level of Ɛi, then for the thermostat following
is ture 𝑛 = 𝑛 − 𝑛ℰ = ℰ − ℰ (7.151)

According to (7.149) for the system as a whole𝑝 = 𝐶 𝑁 (7.152)
Let us further assume, as is common in statistical physics, that𝑁 = 𝑁 (7.153)

This equation is fulfilled with great accuracy in weak interactions.
Since for a body the number of possible microstates N can be taken as the
statistical weight of its levels, then for the system as a whole according
to equation (7.149) 𝑝 = 𝐶 𝑁 (7.154)
where NT is the number of possible microstates of the thermostat.

From the Boltzmann entropy formula applied to the thermostat, it
follows that 𝑁 = 𝑒 . (7.155)

Let us further decompose the entropy value of the thermostat S (n
– n0, Ɛ0 – Ɛi) into a series according to the small values of n and Ɛi.
Limiting this expansion to the first-order terms, we obtain
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𝑆(𝑛 − 𝑛, ℰ − ℰ )≈ 𝑆(𝑛 , ℰ ) − 𝜕𝑆𝜕𝑛 ℰ 𝑛 − 𝜕𝑆𝜕ℰ ℰ (7.156)

Let's take the following notation𝜕𝑆𝜕ℰ = 1𝑇 ; 𝜕𝑆𝜕𝑛 ℰ = − 𝜇𝑇 (7.157)

The values T and μ are called the statistical temperature and the
chemical potential, respectively. In our case they are the characteristics
of the thermostat.

Substituting equation (7.157) into (7.156) and into (7.155) gives𝑝(𝑛, ℰ ) = 𝐶 𝑞(𝑛, ℰ )𝑒 ℰ (7.158)
The constant C1 is determined from the normalization condition,

according to which 𝑝(𝑛, ℰ ) = 1, (7.159)

The final result is𝑝(𝑛, ℰ ) = 1𝑍 𝑞(𝑛, ℰ )𝑒 ℰ . (7.160)

The value Z is obtained from (7.160) and is called the large
statistical sum or the Gibbs sum𝑍 = 𝑞(𝑛, ℰ )𝑒 ℰ . (7.161)

Equation (7.161) expresses the probability that a body in
thermodiffusive contact with the medium (thermostat) contains n
particles and has energy Ɛi.

In the case when diffusion of the body can be neglected (there is
no exchange of particles between the body and the medium), expressions
(7.160) and (7.161) take a simpler form
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𝑝(ℰ ) = 1𝑍 𝑞(ℰ )𝑒 ℰ . (7.162)𝑍 = 𝑞(ℰ )𝑒 ℰ . *
(7.163)

The relation (7.162) is called the canonical Gibbs distribution,
and (7.163) is called the statistical sum. Fig. 7.29 shows the dependence
р = f (Ɛi). Here ℰ̅ is the average energy of the system.

Figure 7.29.

As can be seen from the figure, the maximum likelihood of the
canonical distribution corresponds to the average energy of the body,
which is determined from the ratioℰ̅ = ℰ 𝑝(ℰ ) (7.164)

The canonical Gibbs distribution can be applied to any orbital
according to its definition, since the particles in this orbital are quasi-
independent on the population of particles in all other orbitals acting as a
thermostat.
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Let us first consider particles whose wave function belongs to the
class with odd symmetry, to which, therefore, the Pauli exclusion
principle applies. There are two possible distributions for such particles:

- with an empty orbital, when the fill number and energy are zero;

 - with an occupied orbital when the fill number is 1 and energy
Ɛ1 = Ɛ.

The average number of particles in a quantum state with energy Ɛ
is called orbital occupancy. Extending relations (7.160) and (7.161) to
the particles in question and taking into account that n = 1 and q (1, Ɛ) =
1, we obtain 𝑝(1, ℰ) = 1𝑍 𝑒 ℰ

𝑍 = 1 + 𝑒 ℰ (7.165)

For the orbital occupation we have, respectively𝑛 = 𝑝(𝑛 )𝑛 (7.166)

In our case k takes values 0 and 1, therefore𝑛(ℰ) = 𝑝(0) ⋅ 0 + 𝑝(1) ⋅ 1 = 𝑝(1, ℰ) (7.167)
Denoting, as is customary in quantum mechanics,𝑛(ℰ) = 𝑓(ℰ)

and substituting the equation (7.165) into (7.166), we obtain

𝑓(ℰ) = 𝑒 ℰ
1 + 𝑒 ℰ

or
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𝑓(ℰ) = 1𝑒ℰ + 1 (7.168)

The distribution (7.168) was established independently by Enrico
Fermi and Paul Dirac and is therefore called the Fermi-Dirac statistic.
Particles obeying the Fermi-Dirac statistics are called fermions,
respectively. It has now been established that fermions include all matter
particles that are part of atoms and atomic nuclei, as well as their
antiparticles (electrons, positrons, nucleons and antinucleons, quarks and
antiquarks), as well as neutrinos and antineutrinos that are not part of the
atomic matter. Fermions also include all baryons and composite particles
with half-integer spin.

Let us consider now a group of particles whose wave function
belongs to the class with even symmetry. Let us apply the canonical
distribution to an orbital containing n particles with energy Ɛ. Since each
orbital is characterized by one single state j, following is true for it𝑞 𝑛, ℰ = 1ℰ = 𝑛ℰ  (7.169)

In this case the summation over j is eliminated. According to
(7.161) 𝑍 = 𝑒 ℰ. (7.170)

Since the number of particles in the macroscopic volume of gas is
enormous, we will consider the sum (7.170) as infinite. Then

𝑍 = 𝑒 ℰ . (7.171)

Based on physical considerations, the series (7.171) should be
considered convergent. Indeed, if we assume that Z → ∞, then according
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to equation (7.171) p → 0 , which does not make sense because the
probability of all states cannot be zero. The convergence of the series is
ensured unambiguously in all cases. If μ < 0, then (7.171) is an infinitely
decreasing geometric progression for which𝑍 = 11 − 𝑒 ℰ (7.172)

Substituting (7.172) into (7.161) and then into the distribution
function 𝑓 (ℰ) = 𝑛 gives𝑓(ℰ) = 1𝑒ℰ − 1 *

(7.173)
The relation (7.173) is a symmetric distribution function for

particles that are not subject to the Pauli exclusion principle. This
distribution was first established by Bose and Einstein and is called the
Bose-Einstein statistic. Particles to which this statistic applies are called
bosons. It is now established that bosons include photons, gluons,
gravitons, vector bosons, carriers of weak interactions, and all types of
mesons. In addition, bosons include composite particles consisting of an
even number of fermions.

The chemical potential of the gas μ is in turn a function of
temperature. The level of the gas whose energy at T ≠ 0 is equal to the
chemical potential is called the Fermi level. ƐF = μ (T ) at temperature T
≠ 0 . The peculiarity of the Fermi level is that its occupancy in fermions,
as follows from (7.167), is𝑓(ℰ ) = 12 (7.174)

It also follows from (7.167) that at T = 0 all orbitals for which Ɛ
> ƐF are unfilled (f = 0), and for the orbitals for which Ɛ < ƐF, f = 1 (see
Figure 7.30).
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Figure 7.30

As an example of a fermionic gas, let us consider the electron gas
in metals of the so-called ionic type. Inside the crystal lattice, the
electromagnetic field of positive ions is compensated by the field of
electrons so that the electrons are quasi-free, and the electron gas is close
in its properties to an ideal gas, which obeys the Fermi-Dirac statistics.

This gas has a high energy and Fermi temperature. For silver (Ag),
for example, the Fermi temperature TF = 64000 K , for copper (Cu) TF =
82000 K, and so on. The electron gas state in crystals at absolute zero
temperature is the basic quantum state with the lowest possible energy.
However, the average energy of this state, while minimal, remains quite
large and appears in the form of the kinetic energy of motion of electrons,
whose speed is of the order of 106 m/s.

When a metal is heated, the energy of some small fraction of the
electrons approaches the Fermi energy. However, on average, the energy
of the electrons changes little with changes in temperature.

An interesting property of Bose gas is the Bose condensation. It
consists in the fact that, at a certain temperature, gas particles move en
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masse to the basic orbital. Some, a smaller part of them, remain in their
orbits. It is as if the gas splits into two components with different
properties. Helium, for example, at T = 4.2 K enters the liquid phase,
although even after that the property of liquid helium is still described by
Bose-Einstein statistics. Such fluids are called quantum fluids.

At T = 2.17 K, helium   Не undergoes Bose condensation and
becomes two-component. The component whose particles are in the main
orbital is practically devoid of viscosity. It is, as already pointed out,
called superfluid. The properties of the second component are practically
unchanged. Liquid helium at T > 2.17 K is called helium I, and at T <
2.17 K it is called helium II.

7.6. Quantum field theory

The fundamentals of field theory, including its classical and
quantum aspects, are discussed in general terms in Sections 1.2.2 and 4.
As follows from these sections, the classical field theory proceeds from
the fact that space-time is formed by a set of constantly interacting
discrete matter and continuously distributed physical fields in it, which
connect all physical bodies through fundamental interactions. From the
classical point of view, the discrete nature of matter manifests itself in its
corpuscular structure, represented by a set of elementary particles.

All particles of matter, in turn, have some charge, the nature of
which is determined by the type of interactions (gravitational,
electromagnetic, etc.). Charges create physical fields continuously
distributed in space-time around the particles, which have the property
that at each point they act with some force on the charged particles of the
same nature placed in it.

Classical physics, however, proved unable to answer questions
related to the nature of physical fields and their sources, charges. It also



150

failed to explain why charges create a field around themselves and how
physical fields are involved in the interaction between particles of matter.

7.6.1. Interaction Theory. Virtual particles and the physical
vacuum

The difficulties encountered have found their solution in modern
quantum field theory. From the point of view of this theory, it can be
considered proven that the division of matter into matter and field has a
conventionally-classical character and is justified only when considering
macro-processes. First of all, it follows from the fact that in accordance
with wave-particle dualism and consequent quantum-mechanical nature
of micro-objects not only substance, but also field, has a clearly expressed
discrete structure and is represented by a set of elementary particles. On
the other hand, matter also does not have a purely discrete structure, and
its particles are also characterized by wave properties. In other words,
quantum mechanics has brought particles and fields much closer together.
From its point of view, there is no fundamental difference between field
particles, its quanta, bosons, and matter particles, fermions. Both have
equally corpuscular and wave properties and differ from each other only
by quantum statistics and values of some quantum numbers, including
spin, parity, etc. So, for example, quanta of all fundamental fields are
born and absorbed by discrete portions, particles which, like fermions,
have definite momentum and energy. They differ from matter particles in
that the wave function describing them is even, and the distribution
function obeys not the Fermi-Dirac statistics, but the Bose-Einstein
statistics (see Section 7.5).

It follows from the wave nature of all elementary particles of
matter and field that they can be born and absorbed, as well as mutually
transform into each other. This property is confirmed by many facts.
Thus, an electron and a positron in the process of annihilation give rise to
a pair of photons, and, conversely, photons can give rise to electrons and
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positrons. Proton collisions produce pions, which in turn decay into
muons and neutrinos. Protons, by emitting electrons, turn into neutrons,
and neutrons, by absorbing positrons, turn into protons.

To describe wave processes, on the one hand, it is well known that
continuous media (systems with an infinite number of degrees of
freedom, see section 6.1) must be considered. On the other hand, the wave
processes under consideration, in accordance with their corpuscular
nature, must be subjected to subsequent quantization. The resulting
field is reduced to a set of quantized excitation waves, which are also
called field quanta. The theory of such systems is called quantum field
theory. The mechanical analogue of quantized systems can be a set of
interconnected oscillators that fill the entire space. In such a system, as is
known (see section 6.1), collective oscillations can occur, each of which
is characterized by its own natural frequencies. The connections between
the oscillators contribute to the fact that the corresponding wave
processes propagate through the system. In a quantum mechanical
process, collective vibrations are quantized, and the resulting quanta are
treated as particles with energy and momentum.

Quantum field theory is relativistic. It follows from the fact that
due to mutual transformability of elementary particles in any system
along with slow (nonrelativistic) particles of matter there are always fast
(relativistic) massless particles, such as photons (massless are called
particles with rest mass equal to zero).

In quantum electrodynamics, in particular, it is shown that the
interaction between elementary electric particles is the result of their
exchange of photons, which are emitted by one of the interacting
particles and absorbed by the other. Thus electric charge in quantum
electrodynamics is no longer a thing in itself, but is considered as a
property of elementary particle related to internal, so-called gauge
symmetry of field equations, discussed below. In addition, it is now
shown in quantum field theory that the mechanism of all fundamental
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interactions is identical and therefore the conclusions obtained in
quantum electrodynamics apply to them.

Meanwhile, a free material particle, according to the law of
conservation of energy of classical physics, can neither emit nor absorb a
particle, a field quantum, in principle. In quantum theory, on the contrary,
according to uncertainty relations, behavior of all real particles is
nondeterministic and does not obey the laws of conservation of energy-
momentum. In contrast to the classical principle of causality,  to which
all material objects must obey without exception, quantum objects, i.e.
elementary particles, are characterized by a certain freedom of choice
and are not subject to laws inherent to particles from their material nature.

Formally, this circumstance is unusual and causes some
inconvenience. In this regard, physicists have agreed conditionally to
assume that all elementary particles have a purely material nature, that is,
they have assumed that their behavior is rigidly determined by objective
physical laws, including the laws of conservation and causality.

In order to take into account the real properties of elementary
particles, the theory introduced for each of them another particle that is
subject only to the uncertainty relations, by means of which, therefore,
exchange interactions take place. This particle was called a virtual
particle. In fact, a virtual particle is not a real particle, but only a set of
its possible unrealized states. According to the uncertainty relation a
particle can take any state from this set. Its real state is only one of this
set, which was realized randomly. It follows that the virtual particle
became called a particle only by analogy with the material particle,
although there is nothing in common between them. A virtual particle, by
definition, should be considered non-material. The non-materiality of
virtual particles is confirmed by the fact that their behavior, according to
the uncertainty relations, is completely non-deterministic and causeless.
For a very short time, they first appear randomly and then also disappear
randomly and do not obey the so-called objective laws of Nature,
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including the laws of conservation of energy and momentum. In this
regard, they cannot in principle be observed, because they have time to
disappear before any observer is able to detect them. In this sense, they
are, by definition, immaterial. Thus, virtual particles in all their
properties are antipodes of material particles and, accordingly, meet all
the criteria of immateriality.

On the other hand, since material particles exist in space-time and
virtual particles are immaterial, the latter can exist only outside of space-
time. The above circumstance led to the need to introduce such an entity
(conventionally, a medium), in which, by definition, there are no
material particles, but only virtual particles that are continuously and
randomly born and disappear. To ensure the law of conservation of
charge, it was assumed that virtual particles arise and disappear in pairs
as particles and antiparticles. This medium has been called the physical
vacuum. Obviously, it is necessary to attribute immateriality (virtuality)
to the physical vacuum as well.

In electrodynamics, the existence of the electromagnetic field
(field strength is not equal to zero) is always accompanied by the birth of
photons, but the absorption of photons, i.e. their disappearance, does not
always lead to the disappearance of the electromagnetic field. This means
that in the general case, that is, when the result obtained is extended to
any fields, the field strength and the number of particles, its carriers,
correspond to non-commutative operators and cannot be set with the
same accuracy. Non-commutating operators are those whose result
depends on the order in which they are applied. As an example of non-
commutating operators in everyday life, the events that follow each other
are entering and leaving a room. If we enter first and then leave the room,
we end up outside the room. If you go out first and then enter the room,
the result is just the opposite.

In quantum field theory it is proved that uncertainty relations
apply only to pairs of physical quantities of non-commutative operators.
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Since the number of material particles in the physical vacuum is
always exactly zero, the field strength in it cannot be zero. The mentioned
circumstance led physicists to the conclusion that it is necessary to
consider the vacuum state not as a simple absence of a field, but as a
lower energy state of quantized fields. This means that the physical
vacuum represents one of the possible states of the field that can be
detected experimentally. This approach, in turn, led to the consideration
of the physical vacuum as a special form of matter. This was confirmed
in practice when it was found that in the presence of physical vacuum the
properties of material objects change. In particular, there is polarization
of the physical vacuum, which manifests itself as screening by the
vacuum of a part of the electric charge of a particle. In addition, there are
so-called radiation corrections and level shifts in the form of superfine
splitting of the radiation levels of the electron, etc. A clear contradiction
has appeared. On the one hand, due to the absence of material particles in
the physical vacuum by its definition, it cannot be material. On the other
hand, precisely for the same reason, the physical vacuum should be
considered a special form of matter.

This contradiction is considered within the framework of quantum
field theory as some kind of a given. Meanwhile, it is easily eliminated if
we consider that in the definition of the physical vacuum, as in the case
of virtual particles, a certain arbitrariness is allowed. The point is that, if
we follow exactly the definition of physical vacuum, it should be initially
considered an immaterial medium, to which physical characteristics
inherent to material entities, including field strength, energy, time,
momentum, etc., are not applicable in principle. This means that the
uncertainty relations are essentially inapplicable to it, although their
formal use in describing the physical vacuum in order to better understand
quantum processes is not excluded. The erroneous conclusion about the
materiality of the physical vacuum arose precisely because the initial
assumption is that the laws applying only to material objects, in this case
the uncertainty relations, are applicable to it. In other words, they first



155

assumed that the physical vacuum is a material entity, and then
discovered that it has, quite naturally, material properties.

From this we could conclude that the conclusion about the
materiality of the physical vacuum is far-fetched. However, it is
disconcerting that the material properties of the physical vacuum have
indeed been discovered experimentally. This circumstance suggests that
in the presence of matter and under certain conditions, the physical
vacuum materializes. There is nothing unusual about this
materialization, given that it is not at all limited to the transformation of
intangible entities into material ones. Moreover, it is quite natural and
applies to any non-material formations existing in the Universe, including
virtual particles, monochromatic waves, ideas, categories of thinking
activity, information, etc. Its essence lies in the fact that transforming
factors, the existence of which is a consequence of the existence of
corresponding non-material formations, are imposed on material objects.
An example of such materialization is the phenomenon of modulation,
which we discussed above and which is familiar to many in everyday life.
It consists in the fact that on a material medium (e.g., light wave) is
superimposed intangible information, such as information about the
appearance of the object. This is done with a material signal created by
the distribution of amplitudes and phases in the wave reflected from the
object, the hologram. This hologram recorded, for example, on the retina
corresponds exactly to the distribution on the surface of the body of
amplitudes and phases in the wave reflected from the object, which
corresponds to the individuality, in this case the visual image, of the
appearance of the object in question.

7.6.2. Symmetry in quantum field theory

A special place in quantum field theory is occupied by symmetry
of laws of nature, the notion of which emerged as early as in classical
physics. Symmetry in Greek means proportionality, equality.  A
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distinction is made between geometrical symmetry (positions and shapes)
and physical symmetry (physical laws and equations). Physical laws are
called symmetric if they do not change under certain transformations to
which the system can be subjected. In this case, the laws have symmetry
or invariance with respect to the specified transformations. It follows
from experience that physical laws are symmetrical with respect to:

 - continuous global transformations of the spatiotemporal
group;

 - discrete CPT transformations of space-time;

 - permutation of identical particles;

 - local internal transformations that do not depend on spatio-
temporal coordinates (internal symmetry).

The first group is a consequence of the homogeneity and isotropy
of space-time, which lies outside the microcosm, as well as the equality
of inertial systems (see Section 2.3). It is the result of continuous
transformations of space-time by transferring, rotating the reference
system in space as a whole, changing the origin of time and transition
from one inertial system to another.

The second group of symmetries (CPT) includes discrete space-
time transformations, including spatial inversion (P), which is reduced
to changing the sign of spatial coordinates 𝑟 to (–𝑟), charge conjugation
(C), involving replacement of particles by antiparticles, and time
reversal (T). CPT symmetry is a consequence of relativistic invariance
(i.e. invariance with respect to Lorentz transformations) and locality of
physical interactions. It defines the content of CPT theorem of quantum
field theory, according to which equations of this theory are symmetric
(invariant) with respect to CPT transformations carried out
simultaneously.
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The third group of symmetry means equality of elementary
particles, which is a consequence of identity, i.e. indistinguishability of
these particles.

The fourth group of symmetry means equality under certain
conditions:

 - individual groups of hadrons (isotopic or unitary symmetry in
general);

 - quarks of different colors and leptons (quark-lepton symmetry);

 - fermions and bosons (supersymmetry);

 - fundamental interactions whose source are conserved charges
(gauge symmetry).

Isotopic invariance refers to particles participating in strong
interactions, hadrons that form isotopic multiplets. An isotopic
multiplet is a group of particles with different electric charge but
approximately the same masses and exactly the same spin, isotopic spin,
internal parity, baryonic charge, strangeness, charm and beauty (see
Section 7.4.10).

The total number of values that the isotopic spin projection
(7.140), electric charge (7.141), and hypercharge (7.142) can take is
determined by the number of multiplet members.

For duplets, such as nucleons,𝐼 = 12 ; 𝐼 + 12 ; − 12 ; 𝑄(𝑄 = +1, 𝑄 = 0)
Y = 1 (B = 1, S = C = b = 0).

For triplets, e.g., π-mesons, the hypercharge and electric charges,
respectively, are found from the relations
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I = 1; Iz (+1; –1; 0); Q (+1; –1; 0).

Y = 0 (B = S = C = b).

Moving from one particle to another within a given multiplet does
not, as we see it, change the value of its isotopic spin, but it changes its
projection, which is mathematically equivalent to rotating the vector of
isotopic spin in some isotopic space. This corresponds to symmetry group
SU(2) if the number of varieties (flavors) of quarks included in these
particles equals two of 3 flavors, to group SU(3) if the number of varieties
(flavors) of quarks equals 3 of 3 flavors, to group SU(n) if the number of
varieties (flavors) equals 3 of n. It follows that nucleons and pi-mesons
composed of quarks of two flavors (u,d), as well as sigma-hyperons and
K-mesons, are hadrons with SU(2) symmetry, while other baryons are
hadrons with SU(3) symmetry or higher. Indeed, studies have shown that
there are unions of hadrons with higher multipletting. This means that
isotopic symmetry is part of a more general, unitary, symmetry of SU(n)
groups, which unites hadrons, which are a combination of 3 of n varieties
(flavors) of quarks, into a family of multiplets with a large number of
members.

Both isotopic and unitary symmetries are imprecise. Weakly
broken by electromagnetic interactions, the isotopic symmetry includes
hadrons with slightly different masses. The unitary symmetry is broken
much more strongly. This is due to the fact that the masses of s, c, and b
quarks included in hadrons united by unitary symmetries differ
significantly from the masses of u and d quarks forming isotopic
symmetries.

Strong interactions are also symmetric with respect to the color
transformations of quarks, which constitute the exact group of 3 colors -
SU(3) - C.
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In the high energy region, there is a similarity between the
electrically weak interaction of quarks and leptons. This suggests that
there is a deeper quark-gluon symmetry underlying the great unification.

Supersymmetry unites fields whose quanta are both bosons and
fermions. In the real world, supersymmetry is broken. There are no
bosons and fermions of equal or at least close mass and no fields whose
quanta are fermions.

According to the Noether's theorem, each symmetry
transformation corresponds to a value that is conserved. For example, the
laws of conservation of momentum, angular momentum, and energy
follow from the symmetry of the space-time group. Symmetry with
respect to the spatial inversion transformation leads to the preservation of
spatial parity. The charge conjugation preserves the charge parity in the
processes of strong and electromagnetic interactions, when the truly
neutral system remains unchanged when the signs of the charges change.
From the symmetry with respect to the reversal of time (changing the sign
of time) follows the preservation of the form of the equations of motion
and the reversibility of elementary processes. From symmetry with
respect to local gauge transformations follow the laws of conservation of
charge, from isotopic invariance follow the conservation of isotopic spin
in strong interaction processes, and so on.

The symmetry of laws with respect to the corresponding
transformations and the consequent preservation of physical quantities
characterizing the system reduces its orderliness, level of organization,
and functionality. The prevalence of symmetry in Nature is a
consequence of the universal law of symmetry, according to which all
material aggregates tend to symmetry, that is, to disorder. It is necessary
to distinguish global, averaged in time and space symmetry from local
symmetry. For example, the local homogeneity and isotropy of space-
time, would turn the Universe into a giant vacuum desert. Fortunately, as
shown above, at one stage of the evolution of the Universe, its
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structurization occurred, which broke its local symmetry while
maintaining, on average, homogeneity and isotropy. The same can be said
about the symmetry of the material totality. It follows from the law of
symmetry that the whole totality must, tending to symmetry, level out.
However, this does not happen, because Nature has taken care to ensure
that simultaneously with the emergence of new orders, its defense
mechanisms would normally emerge to ensure the preservation of orders
and identities for a long time.

Gauge symmetry, as stated above, belongs to the class of internal
symmetries of field equations. It characterizes sublocal symmetries
related to the properties of elementary particles described by parameters
that depend directly on the coordinates of space-time points. Calibration
symmetry reflects the fact that there are some conserved physical
quantities characterizing elementary particles and generalized as
charges, which, while tending to conservation, are simultaneously
sources of corresponding fields. Charge, therefore, is not a structural
unit, but a physical characteristic of a particle that presumably determines
its internal structural order. The gauge symmetry in this case corresponds
to a conserved charge (conserved internal order). It can be seen in the
sense that it resists any attempt to change the internal order by external
factors and seeks to restore it.

From the mathematical point of view, the transformation
associated with the violation of the internal order is understood as a
change in the wave function of a particle by multiplying it by the phase
multiplier containing the value of the charge z,  –e jbz, which does not
change the absolute value of the wave function value. Here b is  an
arbitrary coefficient. This means rotating the wave function by some
angle bz in the isotopic phase space. The angle of rotation in isotopic
space is a function of coordinates in space-time. When rotated by the
phase angle, the equations of motion describing the interactions of the
particles change. To ensure that the equation of motion remains
unchanged, terms expressing the corresponding vector fields should be
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added to it to compensate for these changes. These fields are called gauge
fields.

In quantum electrodynamics, for example, it is proved that the
electromagnetic field is the gauge (compensating) field for
transformation of the electron wave function. The role of isotopic space
in this case is performed by the complex phase space of the wave
function.

The so-called Yang–Mills fields, whose quanta are the gluons
that determine the strong interactions between quarks, are also gauge
fields.

Quanta of gauge fields are called gauge particles. Gluons, for
example, are gauge particles of strong fields, and photons are gauge
particles of electromagnetic fields. It is known that gluons and photons
are characterized by a rest mass equal to zero and spin equal to one. It
turned out that these two properties are inherent to any gauge particles.
For example, in the case of weak interactions, the conserved interaction
constant (weak charge) is the isotopic spin corresponding to the local
group SU(2). From the point of view of gauge symmetry theory,
compensation for isotopic spin changes requires the introduction of three
gauge fields. The sources of these fields are the projections of weak
isospin and hypercharge, and their gauge particles, according to this
statement, are three massless bosons, positive, negative and neutral, with
spin equal to 1.

The problematic nature of the weak interaction mechanism thus
constructed is that this interaction is short-range and must be carried by
massive quanta of fields in connection with it, which, however,
contradicts the original assumptions of gauge theory.

This contradiction is resolved with the help of the hypothesis of
the English physicist Peter Higgs about spontaneous symmetry
breaking. Spontaneous symmetry breaking occurs in the general case
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when the state of systems that are described by equations of motion
having symmetry is energetically disadvantageous. This means that when
the system gets into conditions in which a state with lower energy can be
realized, it, under certain energy ratios, spontaneously deviates from
symmetry and goes to this state, increasing its level of orderliness. This
disturbance is accompanied by a change in the charge of the particles, as
well as a change in their structural ordering and a corresponding increase
in  mass.  In  this  case,  in  particular,  the  birth  of  massive  particles  from
massless particles and the self-generation of matter is possible.

To clarify the situation, let us consider the mechanical analogue
of spontaneous symmetry breaking.

For example, let a ball fall along the axis of a cylinder with a
spherically convex bottom. As a result of symmetric motion and
subsequent falling to the bottom of the cylinder the ball will roll to its
wall, i.e., it will spontaneously move to one of many possible (virtual),
more ordered asymmetric states, but with less energy.

The level of symmetry is determined by the ambient conditions -
temperature, pressure, concentration or generalized - energy of motion.
In the initial Universe, according to Gamow's hot model, a huge energy
was released as a result of the big bang, which was measured by the
temperature at 1032 K (see section 1.6.2.2, and section 1.7, problem 1).
Under these conditions, supersymmetry prevailed in the Universe, all
particles did not yet possess wave-particle duality, had a point structure
and behaved as perfect corpuscules. This means that they had integer spin
equal to 1, rest mass equal to zero, moved at the speed of light, without
interacting with each other.

According to the Higgs hypothesis, immediately after the big
bang, an exotic field (called the Higgs field) arose, which had a braking
effect on quarks and leptons equivalent to their deviation from
supersymmetry. As a result, they structured themselves by reducing their
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velocities, and gained charge and mass. This is how fermions were born
in the Universe, separated from the remaining bosons, which did not
interact with the Higgs field. At the same time, as a result of the
interaction of the born fermions, the corresponding strong, weak, and
electromagnetic gauge fields emerged. In addition, the birth of massive
particles led to a slowing of the rate of time flow, intervals deviated from
linearity, space-time acquired curvature, deviating from local symmetry,
and under the action of the resulting gravity, structured.

According to another version, the spontaneous deviation of the
initial Universe from supersymmetry arose under the influence of the
materialized physical vacuum, which possesses, as mentioned above, a
minimum of energy.

7.6.3. Fundamentals of Quantum Electrodynamics

Quantum electrodynamics is the most important part of quantum
field theory. In particular, it considers the electromagnetic field as a gauge
field with undisturbed symmetry and conserved charge. The gauge
particle of this field is a photon, i.e. a massless particle with spin equal to
one. Another peculiarity of quantum electrodynamics is that, as already
mentioned, it interprets the interaction of electrons as the result of
exchange between them by virtual photons. The intensity of
electromagnetic interactions is characterized by a dimensionless bonding
constant equal to 𝛼 = 𝑒4𝜋𝜀 ℏ𝑐 = 1137

 Let us consider in more detail the action of the gauge
transformation in quantum electrodynamics. Let in the general case be
given two particles, which differ from each other only by their electric
charge e and are described, respectively, by the wave functions
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𝜓 (𝑟, 𝑡) and 𝜓 (𝑟, 𝑡)
The mentioned functions in this case can be considered as

functions describing different charge states of the same particle. This
particle can obviously be described by some complex function 𝜓∗(𝑟, 𝑡),
which results from the superposition of the functions ψp and ψn. From the
mathematical point of view, these functions can also be considered as
components of some vector given in the space ψp and ψn, which in this
case is called isotopic. This vector can be characterized not only by its
components, but also by the rotation angle φ in isotopic space, which is
determined by the magnitude of the charge. Since ψp and ψn are functions
of coordinates and time (𝑟, 𝑡) , then for the rotation angle 𝜑(𝑟, 𝑡) .  A
rotation by such an angle is called a gauge transformation. This
transformation allows us to pass from one state of a particle to another,
and the rotation of the vector in isotopic space, characterizing this
transition, can be regarded as equivalent to some superposition of the
functions ψp and ψn.

The laws describing the behavior of the particle in question are
obviously independent of its state (in this case charge state). Therefore, it
can be argued that these laws are not violated by the gauge
transformation. This means that they are invariant with respect to the
angle of rotation of the vector. This invariance is relativistic, because the
laws of nature are invariant in this case with respect to the Lorentz
transformations. In other words, these laws do not depend on the local
choice of one or another superposition of the functions ψp and ψn.

It follows from the relativistic invariance of the laws of motion
that the wave function 𝜓∗(𝑟, 𝑡) describing it changes both with time and
with changes in coordinates.

This means that when the complex vector of the wave function in
complex phase space is rotated by an angle 𝜑(𝑟, 𝑡) , the equations
describing the behavior of the particle will acquire an additive
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proportional to the change in angle φ as a function of 𝑟 u t. This additive
in Lorentz transformations changes as a four-vector.

Since, however, the equations of motion are invariant with respect
to the Lorentz transformations, in order to compensate for this addition,
we should introduce functions describing vector gauge fields that would
acquire the same addition, but with opposite sign, when rotated. These
fields prevent changes in the charge and leave it constant. In other words,
gauge fields give rise to interactions of particles, due to which gauge
symmetry is ensured.

In quantum electrodynamics, the real and imaginary parts of the
electron wave function play the role of components of the complex
vector 𝜓∗(𝑟, 𝑡) = 𝜓 (𝑟, 𝑡)𝑒 ( , ) (7.175)
where ψe* is the imaginary part of the electron wave function;

e is the charge of the electron.

The isotopic space is the plane of the complex variable, where the
real and imaginary parts of the function ψe* are plotted along the axes.

The relativistic Schrödinger differential equation for the wave
function of the free electron, taking into account the requirement of
relativistic invariance, was obtained by Dirac in 1928. Analysis of this
equation showed that the gauge field of the electron wave function in this
case is described by Maxwell's electromagnetic field equations. The
calibration particle of this field is a massless particle with spin 1,
equivalent to a photon.

Quantum electrodynamics has received a large number of
experimental confirmations within a wide range of spatiotemporal
intervals, from cosmic at 1018 to 1020 m, to microscopic intranuclear at
10-15 m.
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Quantum electrodynamics, in particular, describes the processes
considered earlier with high accuracy almost completely coinciding with
the experiment. These can include thermal radiation processes (see item
7.2.1.2), Compton effect (see item 7.2.2), braking (X-ray) radiation (see
item 7.4.4.3) and electromagnetic interaction processes (see items 6.5.7,
6.6.3) at any of the above levels. They also include such specific quantum
processes as polarization of physical vacuum, scattering of light on light,
birth of pairs of antiparticles in strong electromagnetic and gravitational
fields and opposite processes of annihilation of particles, etc.

The specific processes of quantum electrodynamics are outlined
in the following sections of the chapter.

7.6.4. Fundamentals of Quantum Chromodynamics

Quantum chromodynamics is a quantum theory of strong
interaction of quarks and gluons, modeled on quantum electrodynamics
based on gauge symmetry theory. In quantum chromodynamics, in
contrast to quantum electrodynamics, instead of a single charge, which is
the source of the gauge electromagnetic field, there are three color
charges belonging to three quarks of the corresponding colors. In
connection with this, in the color calibration theory, during the transition
from one state to another, the gauge transformations change not only the
phase, but also the color, i.e., the complex wave function is given by three
matrix equations 𝜓 (𝑥) → 𝑒 ( ),
where the indices α and β correspond to the three possible color values of
quarks.

This means that instead of a single rotation angle φ (x ), all color
states are enumerated by superposition of rotations by nine possible
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angles φαβ (x ) , where α, β = 1, 2, 3. One of these angles corresponding
to the matrix sum 𝜑
is independent of time and coordinates. Therefore, in order to compensate
for changes in the equations of motion, it is necessary to introduce eight
gauge (color) fields instead of nine. These fields are usually called gluon
or Yang-Mills fields. Quanta of these fields are color, i.e. charged
massless gauge particles, gluons, with spin equal to 1. The exchange of
virtual gluons leads to a strong interaction. Since gluons, like quarks, are
charged, they themselves generate gluon fields. Emitting and absorbing
virtual gluons, they interact both with each other and with quarks. This
means that the gauge field equations for gluons are nonlinear. Fields of
the electromagnetic type, which are described by linear equations, as well
as their gauge theories, are called Abelian fields. Gauge fields that are
described by correspondingly nonlinear equations and their theories are
called non-Abelian fields.

The bonding constant of strong interactions is also determined, as
in the case of the electromagnetic field, by the formula𝐾 = 𝑔4𝜋𝜀 ℏ𝑐 = 14,
where g is the value of the effective charge of the strong field.

This means that the intensity of strong interactions is more than
100 times greater than the intensity of electromagnetic interactions.

In ordinary matter under normal temperature conditions, strong
interactions do not cause any processes, and their role is reduced only to
the creation of strong bonds between quarks within nucleons and between
nucleons in nuclei. This is because strong interactions are short-lived.
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Their radius of action is only 10-15 m and does not go beyond the atomic
nucleus. This essentially distinguishes them from electromagnetic
interactions, which are responsible for the absolute majority of processes
in matter. Indeed, the radius of action of electromagnetic interactions is
theoretically infinite. Practically, the bipolarity of electric charges, the
number of which is the same in atoms, neutralizes the effect of the
electromagnetic field already at the molecular level, i.e. at distances of
the order of 10-9 m. Nevertheless, these are the ones that determine all
atomic and molecular processes that play a leading role in Nature.

Under experimental conditions in which nuclei or nucleons with
sufficiently high energy collide, nuclear reactions occur, resulting in
radioactivity and  fusion processes, which are accompanied by the release
of high energy and create all energy processes in the universe. Starting at
energies of a few hundred megaelectronvolts, strong interactions give
birth to pions, which ensure the bonding of nucleons within the atomic
nucleus, and at even higher energies, to the birth of strange, charmed, and
beautiful particles.

The small distances at which strong interactions appear follow
from the logic of chromodynamics. Suppose, for example, that when
virtual gluons are exchanged, one of the nucleon quarks gets enough
speed to leave the nucleus. As a result, as indicated, a quark-antiquark
pair is born. The antiquark of this pair combines with one of the nucleon
quarks, discoloring it and turning it into the virtual qq* meson responsible
for the intranuclear forces. The remaining quark from this pair joins the
two quarks of the nucleon, discoloring them. As a result, the nucleon
returns to its initial state. This prevents a quark from escaping from the
nucleus and passing to a free state, as well as from violating the nucleon's
stability. In other words, any attempt of a quark to escape from the
nucleus brings the whole system back to a stable initial state and makes
long-range interaction impossible.
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7.6.5. Weak interactions

The name of this interaction follows from the fact that its intensity
is much lower than the intensity of strong and electromagnetic
interactions. In practice, the strength of interactions is estimated by the
measurable rate of induced processes at the same energies. The energy at
which velocities are estimated is usually taken to be 1 GeV, which is
typical for elementary particle physics. At this energy, the minimum rate
of processes such as radioactive decay under the influence of strong
interactions is 10-23 s, rate of electromagnetic processes is 10-21 s, and rate
of so-called weak processes such as β-decay is 10-10 s. The intensities of
these interactions also correlate with each other in the same proportion.
The binding constant for weak interactions is respectively 10-15

𝐾 = 𝑞4𝜋𝜀 ℏ𝑐 ≈ 10 ,
where qw is the effective charge of the weak field.

The intensity of weak interactions increases rapidly with
increasing energy. For example, the low-energy process, the β-decay of
the neutron, which occurs with an energy release of only about 1 MeV,
lasts almost 103 s. By comparison, the β-decay of a Λ-hyperon lasts for
10-10 s, that is, it occurs with an intensity 1013 times  greater,  while  the
energy release is increased by a factor of only 100. At a significant energy
increase of 105 times (up to 100 GeV), which corresponds to distances of
colliding particles much smaller than the so-called Compton wavelength,
equal to 2 · 10-18 m, the intensity of weak interactions increases
dramatically and approaches the intensity of electromagnetic interactions.

The radius of action of weak interactions is very small and is on
the order of 2 · 10-18 m. This means that weak interactions are
concentrated deep inside the atomic nucleus and affect intranuclear
processes. Despite their extremely small magnitude and short duration,



170

weak interactions play an enormous role in internuclear processes, as well
as in the processes associated with the functioning and evolution of stars
and, consequently, the Universe as a whole.

The processes of thermo-radioactive fusion and β-decay of
radioactive atomic nuclei, common in Nature, are associated with weak
interactions. The former are accompanied by the emission of neutrinos
(antineutrinos) and serve as the main source of energy in the Universe.
The second play an important role in the mutual transformations of
protons and neutrons within nuclei, which determine the natural
radioactivity of the latter, the dynamics of their functioning, and the very
possibility of their existence. In addition, they ensure the emergence in
Nature of a certain excess of electrons (positrons) and neutrons, as well
as the circulation of neutrinos, without which the Universe would be
doomed to death. In space, weak interactions do not only lead to fusion.
On the one hand, they cause the explosion of so-called supernovae and
their evolution up to black holes. On the other hand, these explosions
result in the formation of interstellar matter that serves as raw material
for second-, third-, and so on-generation stars, to which our Sun belongs.

The theory of β-decay was constructed by Fermi in 1934 by
analogy with the theory of electromagnetic processes. Fermi based his
theory on the contact interaction of two so-called weak currents, which
are formed by four fermions, namely, the proton (p), neutron (n), electron
(e), and neutrino (ν). These currents, according to Fermi, are the result of
birth and annihilation of these particles in the process of their mutual
transformation. The first current, called the nucleon current, converts the
neutron to a proton. It is denoted as 𝑝𝑛 through the proton birth p and
neutron annihilation 𝑛 operators. The second current, called the lepton
current, translates the neutrino into an electron and is denoted by 𝑒�̅�
through the electron creation e and neutrino annihilation operators,
respectively.
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These operators are noncommutative and form non-Abelian
groups. By analogy with the isotopic symmetry of strong interactions,
they lie at the base of the symmetry of the SU(2) group. It also follows
that the electron and antineutrinos escaping from the radioactive nucleus
during β-decays are not contained in it, but arise due to weak interactions
during intranuclear transitions of nucleons. This process is analogous to
the emission of photons by excited atoms.

Weak currents, unlike electromagnetic current, change the charge
of particles and are therefore called charged (electromagnetic currents, as
well as any other currents that do not change the charge of particles, for
the same reason are called neutral). Subsequently, the theory of weak
interactions was improved by the American physicists Murray Gell-
Mann, Robert Marshak, Richard Feynman, and E. C. George Sudarshan,
who in 1957 proposed a universal, so-called V-A theory. According to
this theory, the total weak charged current is the sum of lepton and quark
currents. Subsequently, it turned out that the lepton current consists of
three components, which are created by the conversion of three varieties
of neutrinos (electron, muon, and tau lepton) into, respectively, electron,
muon, and tau lepton. In turn, the quark currents form, in total, a charged
hadronic current consisting of nine quark summands. Finally, Murray
Gell-Mann, his American colleagues Sheldon Glashow and Steven
Weinberg, as well as Pakistani physicist Abdus Salam, within the
framework of quantum field theory and gauge symmetry theory,
suggested that the weak interaction is not contact. It, like other
fundamental interactions, is carried by bosons, particles of gauge fields.
In addition, the weak interaction involves not only components of weak
charged currents, but also components of neutral currents, caused both by
mutual transformations of each of the neutrino varieties and quark
varieties. Interactions of charged currents, according to the above
hypothesis, are carried by charged bosons (denoted by W+ and W–,
respectively), and interactions of neutral currents are carried by neutral
boson Z0 and photon.
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The triplet of bosons called intermediate, W+,  W–,  and  Z0, by
analogy with strong interactions, is characterized by a conserved isotopic
spin equal to 1, as shown above, with components +1, –1, and 0 and,
respectively, the symmetry group SU(2). By the same analogy, we can
take the isotopic spin of the photon forming the singlet to be 0, and its
components to be +1 and –1. Accordingly, the symmetry to which the
electromagnetic field obeys is characterized by a single charge and is
described by the group U(1).

7.6.6. Fundamentals of quantum unified field theory

From the time of the ancient thinkers to the present, scientists have
sought to reduce the World to a single beginning. It is this intention that
has been the source of the materialistic concept of a unipolar world that
has existed for about three millennia. Even Democritus laid a single brick
in the foundation of the Universe in the form of the smallest particle of
matter, which he called the atom. The atomistic model was subsequently
brilliantly confirmed by molecular-kinetic theory and experiment. The
fabulous successes of classical mechanics have created the impression
that a huge variety of natural phenomena, including quite complex
thermal and electromagnetic processes, are reduced to a relatively simple
mechanical motion. This raised hopes that unified physics would appear
in the very near future. However, the further development of science has
not lived up to these hopes. It turned out that the processes taking place
in the microcosm have very little in common with mechanical motion,
which in some cases loses any physical meaning here at all. The past
century was also marked by the rapid growth of discoveries of a variety
of new elementary particles that make up the atom and the atomic
nucleus. It seemed that the dream of a unified physics had finally
collapsed. However, by the middle of the 20th century, due to the
successes of quantum field theory, the situation changed dramatically
again. First of all, it was shown that all the various interactions that exist
in Nature can be reduced to just four fundamental ones. Work on
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classification of elementary particles, started in this connection, revealed
deep similarity between them and allowed to suggest that this similarity
was based on single structure of matter, the same single brick of the
Universe, which was predicted by Democritus 2500 years ago. The
subsequent quark theory and theories of isotopic, unitary, and gauge
symmetry, as well as the supersymmetry theory, allowed reducing more
than a few hundred elementary particles to several varieties of leptons
and a small number of multiplet hadrons with similar or close properties.
Recently, the theory of combining electromagnetic and weak interactions
has been created, and at present the theory of the great unification of
weak, strong and electromagnetic interactions is being created, in which
it seems to be possible to include gravitation as well.

Let us consider in more detail the theory of unification of
fundamental interactions. It is now established that the division of
interactions into 4 types, differing in their intensity, radius of action,
concentration at different structural levels and specificity of carriers, is
justified only at not too high energies acting at the upper levels. It turned
out that when penetrating deep into the nucleus of the atom and the
corresponding increase in energy, the interaction constants are compared,
and the differences between the subnuclear particles and types of
interactions are smoothed out. This led to the assumption of a single
physical nature of all kinds of fields and elementary particles. At the
beginning of the last century, the hypothesis of wave-particle duality
revealed a profound similarity between particles of matter and fields.
Then it turned out that the huge variety of elementary particles is
conditional and that in fact they are all combined into three classes of
common physical nature, namely, hadrons, composed of quarks, leptons
and field quanta, bosons. On closer examination, it became clear that in
the field of ultrahigh energies there is a further leveling of elementary
particles and their interactions. This allows us to conclude that one of the
most important attributive properties of the material world is associated
with its unstoppable desire to preserve symmetry, to destroy structural



174

ordering and individuality, the transition of matter and field in the depths
of atomic nuclei to a vacuum-like state. The distinction observed in
practice between field and matter, on the one hand, and the elementary
particles representing them, on the other hand, as well as the differences
between types of fundamental interactions, is the consequence of
relatively stable gauge fields operating at the upper levels.

The common nature of the interactions manifests itself only at
very high energies, higher than 103 GeV. At these energies, the difference
between the weak and electromagnetic interactions disappears and a
single electrically weak field emerges. At even higher energies, on the
order of 1016 GeV, the constants of the electrically weak and strong
interactions are compared and mutual transformations of quarks and
leptons become theoretically possible. Finally, supersymmetry, which
should take place at even higher energies, on the order of 1019 GeV, unites
into single groups fermions and bosons, including bosons with spins 3/2
and 2, which are attributed to quantum gravitational field particles,
hypothetical gravitinos, and gravitons respectively.

As already mentioned, the standard theory of electrically weak
interaction was created in the 1960s by American physicists Sheldon
Glashow and Steven Weinberg, as well as Pakistani physicist Abdus
Salam. According to this theory, the weak interaction, like other
fundamental interactions, occurs in an exchange way. It is transported by
virtual heavy intermediate vector bosons W+, W–, and Z0 and a massless
photon A with spins equal to 1, which are quanta of vector gauge fields
of weak interaction and gauge field of electromagnetic interaction. The
sources of these fields are projections of weak conserved isotopic spin. In
this case, the field of photon A and the fields of vector bosons B0, W0 and
Z, are related by the following linear relations

A = B0 cos β + W0 sin β (7.176)
Z = – B0 sin β + W0 cos β (7.177)

where β is determined from the equation



175

tan 𝛽 = 𝑔′𝑔 , (7.178)

where g' is the weak conserved hypercharge constant;

g is the effective weak charge.

The relationship between the electric charge e and the weak
charge g is given by the expression

e = g sin β (7.179)
Occurrence of mass in intermediate bosons occurs with

spontaneous breaking of gauge symmetry so that the rest masses of the
W+ and W– bosons are 80 GeV/c2, of the Z boson is 90 GeV/c2, and the
rest mass of the photon is zero, respectively. This theory of electrically
weak interaction has found brilliant confirmation in practice. This
happened after vector bosons were discovered at the end of the last
century, whose characteristics fully matched those predicted. In addition,
the connection between photons and vector bosons indicated in this
theory was confirmed.

Following the creation of the theory of electrically weak
interactions, it has also been observed that in the high energy range, gauge
theories predict an increase in the electrically weak interaction constant,
on the one hand, and a decrease in the strong interaction constant, on the
other. Extrapolation of these predictions to the region of ultra-high
energies, made it possible to assume that at the level of energies 1014 to
1016 GeV should have equality of all three constants. This made it
possible to combine the electrically weak and strong interactions within
the framework of the Grand Unified Theory (GUT). In this case
photons, gluons, and intermediate vector bosons should form a multiplet
of quanta of gauge fields of a single gauge quark-lepton symmetry.
Moreover, since the specified energy is close to the value of the so-called
Planck mass, equal to 1019 GeV/s2, there is hope that within the
framework of the quantum theory of gravitation it will be possible to
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combine gravitational interaction with the Grand Unified Theory.
Experimental verification of these assumptions is currently problematic,
since it is not possible to obtain energies of the required magnitude in the
foreseeable future. At the same time, according to Gamow's so-called hot
Universe model, these energies took place in the initial Universe, at a
point in time close to the Big Bang. This explains the processes that took
place in the initial Universe. At the same time, combining quarks and
leptons into one multiplet leads to quark-lepton transitions and proton
decay. Calculations give as yet unconfirmed by experiment the proton
lifetime of the order of 1030 years. In principle, this could explain the
charge asymmetry observed in the Universe (the inequality of the number
of particles and antiparticles) and the presence of neutrino rest mass. The
theory also predicts the existence of magnetic monopole-type solutions,
the existence of which also follows from the Dirac equation obtained back
in 1927. The mass of predicted magnetic monopoles is so large that it is,
unfortunately, not yet detectable by laboratory means.

7.6.7. Perturbation theory

The perturbation theory method used to calculate quantum field
theory processes was proposed by the American physicist Richard
Feynman. This method, also called the Feynman diagram method,
consists in taking into account, step by step, an increasing number of acts
of interaction of free particles, which are treated as point objects.
Examples of Feynman diagrams are shown in Figures 7.31, 7.32, and
7.33.

The graphical symbol of particle propagation in Feynman
diagrams is conventionally assumed to be some line, and real particles,
fermions, are compared with a solid line and field quanta with a dashed
line. The arrows on the lines indicate the direction of propagation of the
particle. Antiparticles are matched with a solid line with an arrow
showing the direction of propagation opposite to that of the
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corresponding particle. Virtual particles are considered to be particles that
are born and then absorbed at intermediate stages. In Feynman's diagram,
it correspond to the lines connecting the meeting points, which are
denoted by Arabic numerals. In the first, second, and so on
approximations, one-time, two-time, and so on acts of interaction
between different particles are taken into account. The number of acts of
interaction is called the order of the diagram. The time axis is considered
to be directed to the right and is not directly depicted in Feynman's
diagrams. All diagrams are composed of the simplest elements, the vertex
parts, consisting of three lines converging at the meeting points and
representing either emission of a particle or its absorption, or birth by the
field quantum of a particle-antiparticle pair, or, finally, annihilation of the
pair. A second-order diagram describing the scattering of a photon on an
electron is shown in Figure 7.31.

Figure 7.31.

In the initial state there is an electron and a photon. As they
propagate, they meet at point 1. As a result of the encounter, an electron
absorbs a photon. The resulting virtual electron emits a new, finite photon
at point 2, which is emitted in one direction and propagates itself in the
other direction. The result of the scattering process considered is a change
in the initial directions of propagation of both the photon and the electron.
The diagram consists of two vertex parts, the emission of the virtual
electron at point 1 and its absorption at point 2.
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Figure 7.32 shows a diagram of the interaction of two electrons.
In the initial state there are two electrons that propagate in the same
direction. If the first electron at point 1 emits a virtual photon in the
direction of the second electron, then it, at point 2, is absorbed by the
second electron. As a result, further directions of propagation of electrons
diverge, i.e. electrons are repelled. The diagram consists of two vertex
parts, the emission of a virtual photon at point 1 and its absorption at point
2.

Figure 7.32. Figure 7.33.
Figure 7.33 shows a third-order diagram of photon braking

radiation in the interaction of two electrons. Two electrons are present in
the initial state. At point 1, the first electron, meeting the second electron,
is inhibited and emits a virtual photon, which is absorbed by the second
electron at point 2. Having been excited, the second electron radiates a
non-virtual photon at point 3, resulting in braking radiation. The diagram
consists of three head parts, the emission of a virtual photon at point 1,
its absorption at point 2, and the emission of a photon at point 3.

An analysis of Feynman diagrams showed that the contribution of
each vertex to the process amplitude is proportional to the interaction
constant. The interaction constant is determined by the square of the
absolute value of the wave functions of the interacting particles (process
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probability). Mathematically, this is expressed by the fact that in the
relation for the amplitude of the process, the coupling constant enters as
a power with an index equal to the number of vertex parts (vertices) of
the diagram.

Figure 7.34

In addition to the interaction processes of two or more particles,
self-interaction cases are also possible, when a virtual quantum of the
corresponding field is emitted and absorbed by the same particle. A
diagram of the self-interaction process is shown in Figure 7.34. The self-
interaction leads to the formation of the particle's own field. It is created
by the emission of a virtual quantum particle and its subsequent
absorption by the same particle. It is not difficult to understand that the
presence of self-interaction leads to an increase in the mass of the particle.
This is explained by the fact that the field generated by the particle has
some energy. According to the theory of relativity, the field mass mF

corresponding to this energy is added to the non-field, the so-called
priming mass m0 of the particle. Since the particle is assumed to be point-
like, the field mass increases sharply as it approaches the particle and in
the limit tends to infinity. For this reason, the self-interaction diagram is
said to diverge. A similar divergence appears in the case of polarization
of the physical vacuum arising in the presence of material particles. It has
already been said above (see Section 7.6.1) that the physical vacuum is a
virtual medium populated by virtual particles, with the help of which the
processes described by the uncertainty relations are accounted for. This
means that in the physical vacuum virtual particle-antiparticle pairs are
continuously and randomly born and disappear (annihilate). The energy
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of virtual field quanta is absorbed at pair birth, and this energy is emitted
during annihilation in the form of virtual field quanta. Figure 7.35 shows
a diagram of this process for the electromagnetic field. Under the action
of a virtual photon emitted by the electrostatic field located at the point
marked with an asterisk, a virtual electron-positron pair is born in the
physical vacuum at point 1. Normally this pair annihilates at point 2. If
an electron is brought to point 3 of the field, it interacts with the virtual
pair. This interaction manifests itself in the fact that the electron at point
3 attracts the virtual positron of the pair and repels its virtual electron. As
a result, the electron is surrounded by a layer (cloud) of virtual positrons,
reducing (shielding) its charge. This phenomenon was called vacuum
polarization. Since the electron is assumed to be point-like, the positron
cloud includes an infinite number of positive charges, with the result that
the effective charge of the electron would have to tend toward infinity. If
the source of the primary virtual photon is another electron, then the
process takes on the character of an exchange of electrons by virtual
photons, and if one electron emits a virtual photon, then the other absorbs
it. Due to the recoil in the exchange of photons, the electrons diverge, i.e.
repel. When an electron exchanges photons not with an electron but with
a positron (positive charge), the latter emits a photon in the opposite
direction, and the interacting particles converge due to recoil, that is, are
attracted.
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Figure 7.35.

 The divergences, as mentioned above, are the result of the
approximation underlying perturbation theory, according to which
elementary particles are assumed to be point-like. This approximation is
justified when considering processes that occur far enough away from the
particles. This circumstance makes it possible to exclude divergences
using the renormalization method. The specified method consists in
using experimental values for the effective values of particle mass and
charge. This makes it possible to isolate the finite observable parts of the
indicated quantities. However, the renormalization method proved
effective only in quantum electrodynamics, that is, in the region of
relatively low energies. For this reason, an intensive search for new
methods of describing microprocesses at all levels, i.e. in the field of high
and ultrahigh energies, is currently under way.
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7.6.8. Fundamentals of Quantum Gravity

The concept of gravity first entered physics with Newton's law of
universal gravitation. However, this law only generalized the
observations available at the time and did not explain the nature of the
mutual attraction of bodies.

The first successful attempt to explain gravity was made by
Einstein, who showed that gravity is a consequence of curvature of space-
time by massive matter distributed in it and the field arising from
gravitational redshift (loss of energy of photons as they move away from
the  massive  body)  which  slows  the  rate  of  time  flow.  In  this  case,
gravitation is perceived as an ordinary force that causes local acceleration
of bodies, which, however, does not depend on their mass. This allows a
quantitative description of gravitation, as in the case of other forces, using
notions of the force field. In this sense, taking into account the theory of
proximity following from the special theory of relativity, we can assume
that the source of the gravitational field is the mass of bodies, and its
carrier is gravitational waves.

The general theory of relativity revolutionized the idea of the
mutual gravitation of bodies. However, in two of its most important
provisions, it has remained in the position of classical mechanics.

First, it proceeds from the notion of the continuity of space-time.
If we take into account that space-time is not an independent object, but
only a reflection of properties of an evolving material totality, then
quantization following from quantum theory should extend to space-time
as well. Indeed, quantization follows already from the grand unification
theory as much as from several other aspects of quantum theory. In the
macrocosm, the discreteness of space-time does not manifest itself and
can be ignored here. However, in the microcosm its accounting becomes
mandatory.
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Secondly, the general theory of relativity has remained in the
position of the so-called principle of determinism. This principle was
introduced into science by Pierre Laplace. Relying on Newton's laws of
mechanics, Laplace assumed that there must be an exhaustive set of laws
of Nature that would predict absolutely everything that has happened, is
happening, and will happen in the Universe. For this you must know its
state at this point in time. The celestial mechanics created by Laplace was
a brilliant confirmation of the principle of determinism. For example,
solar and lunar eclipses, great planetary confrontations and other events
in the Universe, calculated according to Newton's laws of mechanics,
were predicted by Laplace for many hundreds of years ahead with great
accuracy.

The principle of determinism has long been regarded as the
fundamental law of Nature. However, with the development of quantum
theory in the first quarter of the 20th century, which emerged in
connection with the penetration of science into the depths of matter, it
became clear that microprocesses are described by uncertainty relations
and are not subject to the principle of determinism. As a result,
gravitational processes in the field of ultrahigh energies, i.e. in extremely
small space-time scales do not obey neither general relativity nor
quantum theory and at the same time in a number of aspects correspond
to both theories. This means that for an objective description of
gravitational processes in the field of ultrahigh energies, it is necessary to
create a third theory that combines the first two, but does not contain the
above contradictions. Such a theory was called quantum gravity.

The idea of unification is not far-fetched. It lies in the fact that in
the region of high energies the difference between objects observed at
relatively low energies is lost. So, for example, in the case of fast spinning
wheel in a game of roulette, the ball, spinning non-stop, over time does
not change its behavior. However, when the wheel slows down and the
energy of the ball decreases, it falls through one of the thirty-seven
grooves of the wheel. Since we cannot predict in advance which groove
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the ball will fall into, we would have to conclude, based on the principle
of determinism, that not one but 37 different types of balls are involved
in the game. In other words, the various properties of the various
elementary particles observed in the region of relatively low energies are
leveled at the transition to higher energies. As a result, seemingly
different particles in the low-energy region are combined into closely
related groups (multiplets), the members of which can be regarded as
different states of the same particle.

The same applies to fields, which, from the point of view of
quantum theory, are also sets of discrete elementary particles, which are
exchanged by matter particles during interaction. Thus, for example,
electromagnetic interactions, on the one hand, and weak interactions, on
the other, in the region of sufficiently high energies, on the order of 102
-103 GeV, lose their identity. This is because the quanta of these fields,
photons and intermediate vector bosons, at these energies form a single
multiplet of almost identical particles. As a result, the electromagnetic
field and the field of weak interactions combine to form a single field of
electrically weak interactions.

At present there is no complete quantum theory of gravitation yet.
There are only a number of approaches to it. Let us consider some of
them, the most logical and most closely reasoned.

7.6.8.1. Supersymmetry
Supersymmetry, as stated above, relates fields whose quanta have

zero or integer spin and belong, respectively, to bosons and fields whose
quanta have half-integer values and belong to fermions. Fields in
supersymmetry transformations form supermultiplets describing particles
with the same mass but different spins. At zero mass, the supermultiplet
includes particles with spins I, I+1/2, and at non-zero mass - with spins I-
1/2, I, I+1/2.
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Quantum field theory distinguishes between spinor, scalar, and
vector fields.

A spinor field is a physical field that is described by the function𝜓(𝑟 , 𝑡), which is a spinor at each point, i.e. it consists of two components
that mutually transform into each other as the coordinate system rotates
by a certain angle. The notion of a spinor was introduced in 1927 by
Wolfgang Pauli, who generalized the Schrödinger equation by taking into
account the spin of a charged particle equal to 1/2 (the Pauli equation).
Such a particle can be in two different spin states with spin projections
equal to +1/2 and -1/2. Accordingly

The wave function describing this particle is two-component, and
is written in the form of a matrix-columnΨ(𝑟, 𝑡) = Ψ (𝑟, 𝑡)Ψ (𝑟, 𝑡) (7.180)

This function is called a spinor. For the first projection of spin
+1/2 ψ = ψ1 and ψ2 = 0, and vice versa. Quanta of the spinor field are all
fermions with spins equal to 1/2, namely electrons, muons, neutrinos,
quarks, and their antiparticles.

A scalar field is a physical field that is described by a scalar
function φ(r,t) that does not change as the coordinate system rotates. Such
a particle is a boson with spin equal to zero. Even functions are called
scalar and odd functions are called pseudoscalar.

A vector field is a physical field that is described by a vector
function. The quantum of the vector field is a boson particle with spin
equal to 1.

These functions can be converted to each other. Let in the simple
case the supersymmetry transformation transforms the spinor function ψ
to the scalar function φ by an angle ε. For small angles we can obviously
write that
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Ψ (r) = ψ (r) + εφ (r) (7.181)
The equation (7.181) is similar to the relation describing the shift

and transition from one point to another in space-time. In this sense,
supersymmetry is local.

Supersymmetry means insensitivity to the choice of different
components of the supermultiplet. Supersymmetry contains all
components necessary to describe weak and electromagnetic interactions
- spinor particles (leptons and quarks), vector particles (photons,
intermediate vector bosons), and scalar particles. The supersymmetry
condition establishes relations between masses of the specified particles
and interaction constants. In real conditions supersymmetry must be
broken, because in Nature there are no quanta of fields, which are
fermions, as well as no spinor particles with zero mass. Hence, by the
way, it follows that the neutrino cannot be a massless particle.

A supersymmetric generalization of gravity theory is called
supergravity. It includes transformations obeying the relation (7.181).
Supersymmetric invariance, by analogy with gauge invariance,
introducing a photon as a gauge massless particle with spin 1, leads to the
necessity of introducing gauge massless particles with spins equal to, 3/2
and 2. The first of them is called gravitino (by analogy with neutrino),
and the second is identified with graviton, which according to quantum
field theory is a carrier of gravitational interactions. The local
generalization of the extended supersymmetry, covering both space-
time and internal degrees of freedom, is called extended supergravity.
Extended multiplets contain, in this case, in addition to the above
particles, also particles with spins 1, 1/2, 0. In other words, extended
supersymmetry combines all four fundamental interactions. At the same
time it is not possible to place all known elementary particles in the above
scheme, which does not allow to put it as a basis for quantum gravity
theory yet.
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7.6.8.2. The Cosmological Hypothesis
Another approach to the quantum theory of gravity was proposed

by one of the most famous among modern physicists theorist English
cosmologist Stephen Hawking. The hypothesis he proposed is closely
connected with cosmological concepts and, in particular, with the modern
theory of the evolution of the Universe, the starting point of which is the
cosmological singularity, which he also introduced in 1970.

Back in 1965, another English physicist Roger Penrose showed
that under the action of the so-called gravitational collapse a star under
certain conditions is indomitable compressed, so that its volume, mass
and energy are reduced to zero, and the density and curvature of the
surrounding space-time are increased to infinity. As a result, a point
superdense formation appears in space-time. This statement is called the
Penrose theorem. The phenomenon of gravitational collapse is quite
common in the Universe. It occurs whenever, due to fluctuations or
explosions of so-called supernovae, which eject the internal matter of a
star into interstellar space, a condensation of matter is formed in a
particular region. Under the influence of increased gravity, the
compaction, and, consequently, its mass, increases avalanche-like. This
growth is compensated by an increase in the electromagnetic repulsion of
the particles of matter as they approach each other, as well as by their
pushing away in accordance with the Pauli exclusion principle.
Calculations show that if the mass of the arising cosmic formation does
not exceed 1.25 solar masses, then further growth of its mass stops and a
compact stable star is formed. If the mass of the star exceeds 3 solar
masses, gravity overcomes the star's internal resistance, and it begins to
shrink inexorably, according to Penrose's theorem. Analyzing this
theorem, Hawking came to the conclusion that when time reverses in the
model of the Universe proposed in his time by the Russian scientist from
St. Petersburg Alexander Friedmann (see 3.9), its initial state must also
be a singularity. Meanwhile, when formulating Penrose theorem and
Hawking hypothesis quantum effects were not taken into account, which
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cannot be absent in singularity, which is a quantum object due to its
microscopicity.

Let the mass of the star contracting into singularity be equal to the
value M. If a body of mass m appears near the star, at a distance r, then
under the action of gravity it acquires energy equal toℰ = 𝐺 𝑀𝑚𝑟 , (7.182)

On the other hand, accelerating in the gravitational field to the
speed of light, the body receives kinetic energy, which tries to bounce it
away from the star, equal toℰ = 𝑚𝑐2 . (7.183)

The mass of the star M is determined from the uncertainty relation
for momentum, namely 𝑀 ≈ ℏ2. (7.184)

As long as the kinetic energy of the body is less than the
gravitational energy, it can approach and move away from the singularity.
From the moment the gravitational energy becomes greater than the value
(7.183), the body starts inevitably approaching the singularity. The
distance rpl, at which the equality of energies occurs, is called the Planck
radius.

From equations (7.182), (7.183) and (7.184) it follows that the
Planck radius

𝑟 = 𝐺ℏ𝑐 = 1.6 ⋅ 10  𝑚 (7.185)

The Planck radius defines the boundary of the singularity
horizon, also called the Schwarzschild sphere, and the singularity
together with its horizon form the so-called black hole. This name arose
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because any object, including a quantum of any field, such as a photon
crossing the horizon line, falls into a black hole and cannot come out of
it anymore. Since this also applies to a set of photons, i.e., rays of light, a
black hole cannot be seen. Not only cosmic bodies evolve into black
holes, but also microparticles. A microparticle approaching a particle
interacting with it at a distance of the Planck radius increases its speed to
the speed of light. As a result, it sharply increases its mass (see Section
3.5.1) and gravitational collapse occurs. One of the particles turns into a
black hole, and the other particle falls into it. This means that the size of
particles, and therefore the size of the element of space cannot exceed the
value of the Planck radius. This minimum possible size of the spatial cell
is called its quantum. A quantum of space corresponds to a quantum of
time, which is apparently equal to 0,5 · 10 –43 s.

From the idea of space-time quantization it follows that the
singularity cannot shrink into a point and is finite, and from the
uncertainty relation for energy, taking into account space-time
quantization, we obtain for the density of matter in the singularity

ρ ≈ 10 96 kg/m3.

The idea of quantization of space-time can also be considered as
a theoretical justification of the postulate of the theory of relativity about
the finiteness of the speed of propagation (transfer) of all kinds of
interactions in Nature.

Based on quantum concepts, singularity cannot be regarded as a
purely material object. In it, as in other quantum objects, processes have
a distinctly non-deterministic nature. In other words, it does not fulfill the
laws of conservation of energy-momentum, causality, and other so-called
objective laws of Nature, which are attributive to material objects.
Wishing, however, to keep traditionally familiar approaches, it is
possible, as it is accepted in quantum field theory, to consider singularity
as a point, purely material object with very high, but still finite density,
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non-zero mass and energy. These quantities are calculated according to
the uncertainty relations and notions of space-time quantization. The non-
material, quantum character of singularity is taken into account in the
same way as in quantum theory of interactions, by introducing the notion
of physical vacuum (see item 7.6.1).

The singularity concept was met with great distrust and was
severely attacked, especially by Soviet scientists. However, it has now
found almost universal acceptance. Meanwhile, it cannot be claimed that
all the problems associated with the singularity notion have been finally
solved. Studies of the various models of the Universe at its initial moment
and of the ways in which it evolved to its present state indicate that its
present state may have arisen from a large number of different initial
configurations. In order to predict what this beginning must have been,
we cannot limit ourselves to relativity theory alone, which, as we have
already pointed out above, does not take into account the quantum effects
that inevitably arise at the singularity. On the other hand, modern
quantum theory does not take into account the influence of powerful
gravity, which takes place in the singularity. Moreover, there is every
reason to suppose that at transition to minuscule space-time intervals of
singularity in the region of huge energies acting there the laws of modern
quantum theory also become invalid. This means that in order to correctly
judge what the beginning of the Universe really was, it is necessary to
supplement field theory with quantum gravity theory. This theory
should unite quantum field theory and relativity theory. Among the
various hypotheses underlying this future theory, the Hawking hypothesis
stands out, which, by the way, shows how much the current ideas about
the initial state of the Universe can change within the framework of this
new theory.

Let us consider the main points of Hawking's hypothesis. We
emphasize, first of all, that according to Hawking, the theory of quantum
gravity should organically include the main provisions of existing
theories - relativity theory and quantum physics. This means that the new
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theory must necessarily include the provision of Einstein's general theory
of relativity that the gravitational field appears as a curved space-time, in
which motion by inertia occurs not along straight lines, but along curved
geodesic lines. It should also include the Feynman method of quantum
theory, according to which the motion of a particle is not characterized
by a single trajectory, as in classical mechanics, but is considered as
movements along all possible trajectories of space-time, which are
equivalent to some spherical wave according to wave-particle duality. In
this case the position of the particle at any given time is described not by
the coordinates, but by the wavelength and phase. The latter means that
the probability of a particle passing through a given point in space-time
is determined by summing all the waves corresponding to each possible
trajectory passing through that point.

In the classical theory of gravity, that is, the general theory of
relativity, only two types of behavior of the Universe are possible - either
it existed forever, or its beginning was a singularity. This alternative is a
consequence of the fact that the Universe is considered here in actual
time, in which the spatial coordinate axes and the time axis are in different
spheres (see Section 3.6). The axis of time always lies inside the cone of
light, which defines all possible events of the past, present, and future,
and the axis of space lies outside of it. In simplified terms, this can be
explained as follows. Let the light impulse is emitted at some point in
time from some point in space, for example a point on the surface of the
Sun. As time passes, it spreads out in all possible directions at the same
speed and becomes a sphere of light. Let's represent this imaginary as a
space-time diagram, with the axis of time pointing vertically upward. Let
the light sphere collides with some cosmic body, the surface of which
cuts a light cone from it with the apex at the point of emission of the light
impulse. A body surface perpendicular to the time axis is a two-
dimensional spatial coordinate surface whose axes are outside the light
cone. Symmetrically to this light cone there is the same light cone, the
time axis of which is directed in the opposite direction. One of these cones
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contains the set of all events that can affect an event at a given point. This
cone is called the cone of the past. The second cone, the cone of the future,
contains the set of all events, which in principle can be affected by what
is happening at this point now (see Figure 3.4). The outer region in
relation to the light cones is characterized by the fact that the events
belonging to it can neither affect the events at that point nor be influenced
by the events occurring at that point. Thus, although space and time form
a single continuum, they are unequal and formally oppose each other as
imaginary and real categories.

This circumstance greatly complicates the summation problem for
all particle trajectories. There is, however, a simple method that makes
this task easier. It consists in the fact that the waves that form those
trajectories of particles, whose motion occurs not in real but in imaginary
time, are added up. In this case, all coordinate axes, including time,
become equal. Hawking's hypothesis is to combine Feynman's
summation along the trajectories of quantum theory with the notions of
the theory of relativity about gravitationally curved space-time. This
essentially means moving on to viewing the Universe from the unified
perspective of quantum gravity. The trajectories of the particles are
curved as if gravity were acting on these particles. The analogue of all
possible trajectories of a particle becomes all curved space-time, which
represents the history of the Universe, and summation by trajectories is
replaced by summation by histories. This approach allows us to add a
third type of its possible behavior to the alternative development of the
Universe discussed above. For this purpose it is enough to pass to
consideration of the Universe in imaginary time, in which all axes of four-
dimensional space-time are equal, and finite space-time is boundless, i.e.
devoid of singularity forming its boundary. The spherical surface of the
Earth can serve as a visual model of such space-time, but not in four-
dimensional, but in three-dimensional consideration, if we consider the
axis of time as its vertical axis, replacing, however, the idea of real time
by imaginary time. Taking the concept of a finite but boundless Universe
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as the basis, its history can be conventionally depicted in the form of the
Earth's surface according to the above model. Then the distance to the
North Pole corresponds to imaginary time, and the dimensions of the
circles, all points of which are equidistant from the pole, correspond to
the spatial dimensions of the universe at a given time. In this case, the
beginning of the Universe still corresponds to a point. This point is at the
North Pole. However, unlike a singularity, it is ordinary and physically
no different from any other point of the spherical surface under
consideration, which represents a point of the Universe at any moment of
its evolution. In this sense, the North Pole point has nothing to do with
the singularity, in which all the laws of Nature are violated. The
expansion of the Universe in this case is equivalent to the movement from
the North Pole to the equator, and the movement from the equator to the
South Pole corresponds to its contraction.

Hawking's hypothesis boils down to the assumption that: "...so-
called imaginary time is really the real time, and that what we call real
time is just a figment of our imaginations...".

We emphasize, first of all, that there is nothing irrational in
Hawking's hypothesis. It is known that our subjective feelings are not
only far from reality, but sometimes have a very distant relationship to it.
The world of images, colors, sounds, smells, tastes, thermal sensations,
etc. is not reality itself, but only a reflection of some very distant from
reality orders, about the essence of which we still have approximate, very
distant from reality ideas. Inverted images are perceived by us as straight
and imaginary images as real. Therefore, it would not be surprising if we
suddenly learned that the time we experience is in fact imaginary. In that
case, though, we would have to reconsider all our ideas about the real
world, and with them all science. After all, not only time would be
imaginary, but many other quantities, such as speed, momentum, power,
current, components of the electromagnetic field, etc. Many purely
positive quantities, such as kinetic energy, would be negative. The signs
of many other quantities would be reversed. It is hard to believe that
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Nature would go to these complications and introduce such confusion
into our ideas.

Nevertheless, the degree of reliability of Hawking's hypothesis, as
well as any other hypothesis, can only be judged by the results of
observation and experiment. One of the most fundamental predictions of
this hypothesis boils down to the assertion that the finite Universe is
boundless. It is easy to show that a direct consequence of this assumption
is really observed in practice isotropy of intensity of the relic radiation.
Another consequence of Hawking's hypothesis is the inhomogeneity of
the density of the Universe in its initial state, which follows from quantum
theory and, in particular, from the uncertainty relations.

It should be kept in mind, however, that these facts are not solely
the consequences of the boundlessness of the Universe, but can be
derived from other considerations unrelated to Hawking's hypothesis.
Thus, we can only speak of a possible confirmation, not a proof of
Hawking's hypothesis. It is noteworthy, however, that in spite of this,
assertions about the boundlessness of the finite Universe are widely
accepted in the scientific literature, although, strangely enough, they are
combined with a simultaneous recognition of the singularity as a
beginning. It follows that Hawking's hypothesis has the right to exist, but
it cannot be considered proven.

7.6.8.3. Superstring Theory
In 1968, two young physicists from CERN (European Center for

Nuclear Research), Gabriele Veneziano and Mahiko Suzuki,
independently of each other, noticed that the scattering amplitude of high-
energy pions can be expressed by a formula using the so-called Euler beta
function (see Appendix 2). Two years later, a number of physicists,
including Leonard Susskind, Holger Nielsen, and others, who were
dealing with the same problem, discovered that the above formula could
be derived differently. To do this, it was necessary to assume that
interacting pions are connected by an infinitely thin, taut string, which is
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described as a quantum-mechanical object. As a consequence, they had
the idea that the string in question could be regarded as a kind of model
of an elementary particle. Generalizing this idea, they put forward the
hypothesis that the interaction of elementary particles can be compared
with the connection and disconnection of these strings. Standing waves
occur in such a taut string. The number of half-waves stacked on the
length of the string determines the mode of the oscillating string. Each
mode corresponds to a certain type of particle. Note that for physicists
working in the field of quantum theory, there was nothing unusual in this
hypothesis. The identity of particles and waves has been known for a long
time, since the formation of the idea of wave-particle duality.
Subsequently, the similarity between elementary particles and waves
became one of the cornerstones of quantum mechanics and formed the
basis of Schrödinger's wave equation. The string in this sense can
obviously also be regarded as a kind of wave-particle formation. This is
how the string theory emerged. Its appeal initially lay in the fact that it
excluded point objects from the theory (a string has, although small, but
finite length) and, with them, divergences. At the same time it had a lot
of disadvantages. First, from the very beginning, a large number of
versions of string theory, independent of each other, appeared, creating
serious confusion. For example, there was a separate theory for particles
with integer spin, bosons, a separate theory for fermions, etc. The theory
led to anomalies of various kinds and, in particular, to a violation of the
law of conservation of energy. The original string theory did not allow to
isolate from an infinite sequence of modes those which corresponded to
a finite and relatively small number of real particles. Back in 1970, the
American physicist Claud Lovelace showed that the Veneziano model,
which formed the basis of string theory, is based on a 26-dimensional
space-time continuum. By introducing spin into string theory, John Henry
Schwarz concluded that in this case the number of dimensions is reduced,
and the theory is realized in 10-dimensional space or in 11-dimensional
space-time. It is known that any physical theory is true for any number of
measurements. Unexpectedly it turned out that the string theory was the
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only one of its kind, which was performed only for a given
dimensionality, which in addition exceeds the number of dimensions of
the real world that we are accustomed to.

All this at first undermined physicists' confidence in the new
theory. However, by now the situation has changed significantly. First,
restrictions were introduced into the theory, which allowed us to exclude
from consideration those modes that do not correspond to real particles.
The new theory was called the superstring theory. In 1984 John Henry
Schwarz and Michael Green proved that the anomalies found in the
superstring theory mutually compensate each other, just as in quantum
theory, the energy disappearing at the birth of particles and arising during
their annihilation is compensated, so that on average the law of
conservation of energy is not violated. In 1995, the American physicist
Edward Witten showed that the different versions of string theory that
existed before were in fact only different expressions of the same
superstring theory. This theory is called the M-theory. It is, as the same
Witten showed, 11-dimensional. The greatest success of superstring
theory was the discovery among the solutions of string equations of a
closed string, which corresponds to a particle with zero rest mass and spin
equal to 2. This came as a surprise, because according to quantum field
theory a hypothetical massless particle with spin equal to 2, called
graviton, is known to be a quantum of the gravitational field and
corresponds to the gravitational waves predicted by the general theory of
relativity. This led to the assumption that the mysterious particle
following from the superstring theory corresponds to the graviton, which
could in principle allow to combine quantum theory and Einstein's theory
of gravitation and build the long conceived, but elusive within quantum
field theory, general physical theory of quantum gravity.

Since then, interest in superstring theory has increased again. This
was also facilitated by Witten and Townsend's original interpretation of
the multidimensional nature of superstring theory. According to this
interpretation, the string itself is one-dimensional or, given time, two-
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dimensional. In string theory, a string is said to sweep a two-dimensional
surface over time, called a membrane or two-dimensional brane. The
freedom of string movement is limited, however, by the complementary
spatial manifold, which corresponds to 3-branes, 4-branes, etc. up to 9
branes. From our point of view this may mean that branes, impose on
each elementary particle certain bonds, limiting the mode of vibration of
the corresponding string of a given length, ordering its internal structure
and, thus, giving the particle a certain individuality. The restriction of
freedom of movement of the string on the brane side occurs only if the
string is not closed, that is, if its ends are free and secured in the respective
branes. From the superstring theory, in particular, it follows that all
elementary particles, except gravitons, correspond to strings with free
ends. The ends of the strings can be attached to the same brane or to two
different branes. It turned out that all known particles, except the
graviton, whose string has no free ends and, therefore, is not fixed,
correspond to strings, both ends of which are fixed on the 3-brane. It
corresponds to 3-dimensional space. This means that neither they, nor all
their formations, can leave it and go to other branes.

We, therefore, are in the 3-brane not because there are no other
branes in the world, but because we are trapped in it and cannot leave it.
Another thing is gravitons, they can in principle leave our three-
dimensional world. This, however, is not happening.

There are two versions to explain this phenomenon. The first of
them believes that gravitons remain within the 3-brane simply because
they are attracted by it. The other one, which is more reasonable, proceeds
from the fact that all dimensions, except for three corresponding to the
real world, are rolled up in small space and appear only at very small
distances, about 10-35 m (according to M-theory, at a distance of 10-18 m).

This hypothesis can in principle be easily tested experimentally.
The point is that interaction forces must always be inversely proportional
to distance to the power of (n - 1), where n is the dimensionality of space.
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In three-dimensional space, for example, they are inversely proportional
to the square of the distance (the law of universal gravitation, Coulomb's
and Ampere's laws, etc.). Experimentally, the specified gravity
dependence has been confirmed up to distances of 0.1 mm so far. What
is the dependence of gravitational interactions on distance at very small
intranuclear distances cannot yet be verified, although experimental
physics is already close to solving this problem. In addition, the question
arises why only 4 of the 11 dimensions have unfolded, including 3 spatial
and time. It is interesting to note that if the dimensionality of real space
were less than or greater than 3, then, as calculations show, the
functioning of the Universe would be impossible.

Analyzing the current state of theoretical physics, Professor of the
University of California Joseph Polchinski notes that the superstring
theory opened the way to the construction of quantum gravity theory and
a unified physical theory. From his point of view, it united in a single
mathematical structure all four types of fundamental interactions, helped
to solve many paradoxes that arose in the quantum theory of black holes,
and freed the theory from the problem of divergences.

It is assumed that with the help of hadron colliders it is possible
to organize a test of string theory. However, no confirmation of these
hypothetical theories has been obtained at the LHC so far.

7.6.8.4. Fundamentals of the Loop Theory of Quantum Gravity
The loop theory of gravitation eliminates the differences between

the general theory of relativity and quantum theory by treating space-time
as a quantum object, which initially has wave-particle duality and a
discrete internal structure. According to the loop theory, it consists of the
smallest indivisible volumes (cells) and the areas bounding them, which
change by discrete jumps, like the frames of a movie. Possible values of
volume and area are measured in units derived from the Planck length. It
defines the scale at which the geometry of space can no longer be
considered continuous and smooth, equal to 10-35 m. The smallest
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possible area other than zero is approximately equal to the square of the
Planck length or 10-70 m2. The smallest possible volume other than zero
is the Planck length cube or 10-105 m3. Thus, according to this theory, each
cubic meter of space contains approximately 10105 atoms of space
volume. The quantum of volume is so small that there are more such
quanta in a cubic meter than there are cubic meters in the entire visible
Universe (1079).

Quantum states of volume and area are depicted in the form of
diagrams, graphs according to the following rules.

Let us assume for simplicity that the region of space is shaped like
a cube.  In the diagram it (Figure 7.36a) is represented by a node as a
point representing the volume of a cube, with six lines coming out of it,
each line representing one of the faces of the cube (Figure 7.36b). The
number next to the node indicates the size of the volume, and the numbers
next to the lines indicate the size of the area of the corresponding faces.
Let us place a pyramid on top of the cube (Figure 7.36c). Polyhedrons
have a common face, and it is depicted as two points (two volumes)
connected by one of the lines (the face that connects the volumes, Figure
7.36d). Drawings of polyhedrons are discarded and only graphs are left.
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Figure 7.36.

Graphs in loop quantum theory are peculiar drawings of pieces of
space and are called a spin network (Figure 7.36h). They describe not the
configuration of the cell, of which we know nothing, but the quantum
state, one of the main characteristics of which is spin.  Each quantum state
corresponds to one network cell (there are 10184 of them in space-time),
and each network cell satisfying certain rules corresponds to a quantum
state. It should be emphasized that the node representing the cell volume
is not the capacity of the particle, but a potentially possible particle, which
is indicated in the network by a certain label.

Since, in the general theory of relativity, space is inseparable from
time, they should be considered together.  Lines of the spin network in
this case expand and become two-dimensional surfaces, and the nodes
representing possible particles are stretched into lines. The nodes from
which the lines come represent transitions from one state to another.
Time, like space, is discrete. The minimum quantum of time is
approximately 10 –43 s, and the transition from one state to another is
occured by leaps and bounds. Since each state corresponds to its own spin

One quantum of area
Large area

One quantum of volume
Large volume



201

network, space-time is represented by a set of spin networks, which is
called a spin foam (Fig. 7.37).

Figure 7.37

One of the advantages of the loop quantum theory of gravitation
is the naturalness with which the Standard Model of elementary particle
physics gets its explanation.

Harari-Shupe preon model was originally proposed. The term
"preon" itself was used to refer to point subparticles included in the
structure of fermions with half-integer spin (leptons and quarks). It was
built on the same principle as the quark model.

However, the use of point particles leads to divergences.
Therefore, Sundance Bilson-Thompsonn proposed a model based on the
more general theory of twisted ribbons (braids), in which point Harari
preons (rishons) were transformed into extended ribbon-like objects,
ribbons. Potentially, this explained the emergence of the color charge of
quarks, eliminating divergences and mass paradoxes. This model leads to
an understanding of electric charge as a topological entity arising from
ribbon twisting.

This theory assumes that excited states of space-time itself can
play the role of preons, leading to the standard model of quantum gravity
theory.
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Bilson-Thompson and his co-authors suggested that the theory of
loop quantum gravity could automatically unite all four fundamental
interactions. Using ribbons, represented in the form of weaves of fibrous
space-time, it was possible to build a successful model of the first
generation of quarks and leptons with a more or less correct reproduction
of their charges and parities.

In this model, it is assumed that the electric charge and color
charges, as well as the parity of particles belonging to generations of
higher rank, should be obtained in exactly the same way as for the first
generation particles. The use of quantum computing methods made it
possible to show that these kinds of particles are stable and do not
disintegrate under the influence of quantum fluctuations.

Ribbon structures in the Bilson-Thompson model are represented
as entities composed of the same matter as space-time itself. The question
of how the Higgs boson can be obtained with the help of the loop theory
is still open.

It is implied that properties of particles (their masses, energies and
spins) may correspond to properties of loops - basic objects of the theory
of loop quantum gravity.

Some other Standard Model particles, such as photons, gluons,
and gravitons, can also be reproduced.  The mass of the particles is
determined in proportion to their internal structure, i.e. the twist of the
braids. For example, in the Bilson-Thompson model, the structure of a
photon having zero mass corresponds to three untwisted ribbons.

What is important for the Bilson-Thompson approach is that in
his preon model elementary particles, such as the electron, are described
in terms of wave functions.
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Following the principle of quantum superposition and the
principle of additionality, an attempt was made to combine the loop
theory of gravitation and string theory.

Loop quantum gravity attaches less importance to matter present
in space-time, and concentrates more on the properties of space-time
itself. In this theory, space-time is a network, a material totality itself, and
ribbons are like strings. Instead of oscillating, they twist, warping space-
time accordingly. The smooth background of Einstein's theory of gravity
is replaced by knots and links, which are given quantum properties. In
this way, space is made up of individual pieces. Theory is mostly
concerned with the study of these pieces.

This approach has long been considered incompatible with string
theory. Indeed, their differences are obvious and profound. Loop theory
studies pieces of space-time, while string theory investigates the behavior
of objects in space-time external to them. These areas also share technical
challenges. According to string theory, there are 11 dimensions in space-
time, and according to loop theory there are the usual 4 dimensions.
String theory suggests the existence of supersymmetry, in which all
particles have undetectable partners.  Supersymmetry, however, is not
peculiar to loop theory.

It is true that recently the opinion of physicists has changed. New
theoretical discoveries have revealed possible similarities between loop
theory and string theory. Attempts to solve some problems of loop theory
led to the discovery of its first unexpected connection with string theory

The loop theory initially had a deviation from the special theory
of relativity.  In the special theory of relativity, the linear dimensions of
an object are reduced only from the point of view of a relatively stationary
observer. And in the loop theory, as the relative velocity of an object
increases, it is compressed, similar to Lorentz contraction, in an absolute
sense, affecting the size of pieces of space-time as well.
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It turned out, however, that bringing the loop theory into
conformity with the special theory of relativity inevitably entails the
appearance of interactions similar to those present in string theory. In
addition, a group of physicists at the University of Erlangen–Nuremberg
(Germany) managed to include supersymmetry in the loop theory, which
had previously been the sole territory of string theory.

7.6.9. Advances and problems of quantum field theory.

Quantum field theory is a unique, though quite natural step in the
development of physics. Its importance for the development of all
physical science can hardly be overestimated. For the first time in the
history of science, it helped to explain the nature of interactions at
different levels of the real-world systems that condition all the processes
going on in it. It also for the first time came very close to creating a
unified physical theory based on the structural elements "bricks" and
physical fields of a single nature underlying the Universe. Quantum field
theory, along with quantum theory of elementary particles, made it
possible to approach the understanding of problems related to the
evolution of the Universe. They explained the formation of the entire
spectrum of chemical elements and matter in general, as well as
biochemical evolution and the emergence of life. Quantum
electrodynamics, created in relation to the interaction of electrons,
positrons and photons and considering the interaction between
electrically charged particles as a result of their exchange of virtual
photons, became the foundation of quantum field theory. Electromagnetic
field in quantum electrodynamics is manifested as a gauge field, the
quantum and gauge particle of which is a photon. The ideas underlying
quantum electrodynamics, whose conclusions proved to be in perfect
agreement with experience, were later extended to other types of
interactions, which also found experimental confirmation. In particular,
this is how chromodynamics, which deals with the laws of strong



205

interactions, and the unified theory of electrically weak interactions,
emerged.

It does not follow, however, that field theory and quantum theory
as a whole do not have any difficulties and unsolved problems. Let us
point out some of them.

1. The problem of divergence.

This problem is that in some cases the theory leads to infinite
values of masses and charges of interacting particles. Such divergences
appear, for example, in the calculation of the self-interaction of fields, in
the processes of pair birth and annihilation, etc. It should be emphasized,
however, that the problem of divergence does not arise in field theory
itself, but in its currently accepted mathematical apparatus, perturbation
theory and Feynman diagrams. These theories, as indicated, consider
elementary particles as point formations. This approach ignores quantum-
mechanical properties of elementary particles and space-time in the
region of high energies, i.e. in the depths of material objects. For this
reason, it is purely approximate and admissible only when considering
processes occurring in the region of relatively low energies. To increase
the degree of the conventionally accepted approximation of perturbation
theory, the so-called renormalization method is used, which consists in
using experimental values of computed divergent quantities and
separating finite observable parts from infinite computed values. The
renormalization method gives acceptable results only in the region of
electromagnetic, weak, and electrically weak interactions, that is, in the
region of still relatively not very high energies. In the region of higher
energies, which are characteristic of strong interactions, it is not always
possible to get rid of divergences.

2. The problem of non-identity of particles with the same spins.

In particular, the reason for the division of particles with spin 1/2
into quarks and leptons has not been fully understood. The above
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assumption that the difference in the properties of these particles is a
consequence of breaking the lepton-quark symmetry in the high energy
region is hypothetical, since experimental verification of this hypothesis
is impossible, at least at the present or close to it high energy levels,
because of the impossibility of reaching these high energies.

3. The problem of free state of quarks and gluons.

The existence of quarks and gluons is hypothetical because of the
fundamental impossibility of obtaining them in the free state and
observing them by existing methods.

4. Problems related to the nature of physical constants, including
charges. Quantum field theory, like other theories, has not solved these
problems so far.

5. The problem of the imperfection of the experiment.

Until very recently, the experimental technique did not provide an
opportunity for reliable experimental verification of results, hypotheses,
and models derived from field theory. For example, for a long time it was
impossible to verify the consequences derived from the theory of gauge
symmetry and to determine, in particular, the nature of internal quantum
numbers. Only in 1983 it became possible to detect and measure the
masses of the components of intermediate vector bosons carrying weak
interactions, which had long before been predicted by theory. This
became possible after the discovery of the Higgs particle, which is
responsible for the magnitude of elementary particle masses. However, a
new problem has arisen in connection with the fact that it is now
necessary to explain the nature and magnitude of the mass of the Higgs
particle itself. Up to now it is not possible to detect hypothetical gravitons
and gravitino, magnetic monopoles, etc., predicted by the theory of gauge
symmetry and supersymmetry. The quantization of space-time, the
instability of protons and their lifetime predicted by the theory also
cannot be confirmed.
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6. The problem of quantum gravity theory.

Einstein's general theory of relativity is classical in the sense that
it ignores quantum effects occurring in the high energy region, i.e. in
small space-time regions, such as the vicinity of black holes, the depths
of matter, etc. This puts on the agenda the problem of creating a more
general theory of quantum gravity, acting also in the high energy region,
which would combine general relativity theory with quantum field theory
into a single theory, incorporating them as special cases and limiting their
action to the low energy region.

The listed problems and difficulties of quantum field theory make
scientists look for other models different from the current ones. One of
the most fruitful ideas of recent times is the attempt to combine string and
loop theory into a single theory of quantum gravity.

7.7. Typical problems in quantum theory

Problem 1. Based on the Planck hypothesis, prove the formula
describing the Compton effect (see Section 7.2.2) of X-ray scattering.
Assume that X-rays are a stream of photons with energy and momentum,
respectively

Ɛ = ħω, P = ħk.

Solution. Let's assume that the X-ray photon 1 experiences a
collision with the electron 2 of the outer shell of the scattering atom 3,
which is known to be weakly bound to its nucleus and is quasi-free (see
figure).
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This means that the energy required for an electron to leave the
atom (ionization energy) is many times less than the energy of a photon.

According to the laws of conservation of energy and momentum
in this case (see figure)ℏ𝜔 + 𝑚 𝑐 = ℏ𝜔 + 𝑐 𝑃 + 𝑚 𝑐ℏ�⃗� = 𝑃 + ℏ�⃗�′
where ħω, ħω' are the energy of the X-ray photon before and after the
collision;

m0 c2 is the energy of the electron before the collision (at rest);𝑐 𝑃 + 𝑚 𝑐  is the energy of the relativistic electron after the collision;�⃗� and �⃗�′ are, respectively, the vectors of the photon wave number before
and after the collision;𝑃 is the momentum of the electron after the collision;𝑃  = 0 is the momentum of the electron before the collision;

m0 is the mass of the electron, m0 = 9.1 ⋅ 10 -31 kg.
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It follows from the first equality thatℏ(𝜔 − 𝜔 )𝑐 + 𝑚 𝑐 = 𝑃 + 𝑚 𝑐
or ℏ(𝑘 − 𝑘 ) + 𝑚 𝑐 = 𝑃 + 𝑚 𝑐

Let's square this expression[ℏ(𝑘 − 𝑘 )] + 𝑚 𝑐 + 2ℏ(𝑘 − 𝑘 )𝑚 𝑐 = 𝑃 + 𝑚 𝑐
from which 𝑃 = ℏ (𝑘 − 𝑘 ) + 2ℏ(𝑘 − 𝑘 )𝑚 𝑐.

Let's square the second equation𝑃 = ℏ (𝑘 − 𝑘 )
The figure shows that𝑃 = ℏ (𝑘 + 𝑘 − 2𝑘𝑘 cos 𝜃)
Substituting P2 into the expression obtained from the first

equation givesℏ (𝑘 + 𝑘 − 2𝑘𝑘 cos 𝜃) = ℏ (𝑘 + 𝑘 − 2𝑘𝑘 ) + 2ℏ(𝑘 − 𝑘 )𝑚 𝑐2𝑘𝑘 ℏ (1 − cos 𝜃) = 2𝑘(𝑘 − 𝑘 )𝑚
Since 𝜆 = 2𝜋𝑘

then finally Δ𝜆 = 𝜆 (1 − cos 𝜃)
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In the case where the Compton scattering occurs on the electrons
of the inner shells (with high binding energy), the photon is not scattered
on the electron, but on the atom as a whole with mass M. Then the
obtained equation does not change, but𝜆 = 2𝜋ℏ𝑀𝑐
and the value of Δλ (Compton displacement) is M / m0 times smaller.

Problem 2. (Feynman's problem). Electron gun 1 (see figure)
emits a beam of electrons with the same energy, scattered at an angle α.

The beam passes through a thin metal plate 2 with two small holes
a and b. Behind it there is another plate 3, which absorbs electrons. In
front of the plate 3 at a distance x from its axis a detector 4 is suspended,
such as a Geiger counter, which counts the number of electrons caught in
it. By moving the detector along the plate 3 and counting the number of
electrons P(x) per unit time for different values of x, the curves are
plotted:

 - P12 ( x) when both holes a and b are open;

 - P1 ( x ) when only one hole a is open;

 - P2 ( x) when only hole b is open.

Here P(x) is the probability distribution of electrons hitting a
given point of the corresponding screen in the x direction, which is
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defined as the ratio of the number of electrons hitting a given point to the
number of all electrons hitting the screen.

It is required to do following:

1) plot curves P1(x), P2(x), and P1,2(x) on graphs combined with
the figure;

2) establish dependences P1,2(x), P1(x), and P2(x) and explain their
nature;

 3) determine how the established dependence changes by
including in the experiment an observer who can follow the electrons and
find out through which hole the electron that is currently registered by
counter 4 has passed (for example, by flashes of light near the holes).

Solution.

1. When electrons pass only through one of the holes and the other
is closed, they behave like classical particles - corpuscles (for example,
bullets fired from a machine gun installed instead of electron gun 1). In
this case, the functions P1(x) and P2(x) have the Gaussian law distribution
of a random variable (scatterplot) shown in the figure (curves 5).

2. If electrons were in fact classical particles, it is quite obvious
that for them

Р1,2 (х) = Р1 (х) + Р2 (х), (1)
i.e., the distribution curve P1,2 (x)  would  have  the  form  of  a  Gaussian
curve (curve 6).

(3) Since, according to quantum theory, electrons obey wave-
particle duality, outside of plate 2 their distributions do not simply add up
according to (1), but interfere, and, as follows from the Schrödinger
equation, their probability of being at a given point x, determining
functions P1(x), P2(x), and P1,2 (x), is proportional to the square of the
amplitude of the corresponding wave functions
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φ1(х), φ2(х), and φ1,2 (х).

In other words,𝑃 (𝑥) = |𝜑 (𝑥)| ; 𝑃 (𝑥) = |𝜑 (𝑥)| ; 𝑃 (𝑥)= |𝜑 (𝑥) + 𝜑 (𝑥)| . (2)

From relation (2) it follows therefore that𝑃 (𝑥) = |𝜑 (𝑥)| + |𝜑 (𝑥)| + 2|𝜑 (𝑥)||𝜑 (𝑥)|. (3)
or 𝑃 (𝑥) = 𝑃 + 𝑃 + 2 𝑃 𝑃 cos 𝛿. (4)

where δ is the phase difference for the wave functions, φ1 and φ2, which
is determined by the path difference and is therefore a function of x. The
distribution graph P12(x) is shown in the figure (curve 7) and has the form
of an interference curve with alternating maxima and minima. This means
that the same electron, passes as a wave, simultaneously through holes a
and b, as if splitting into two parts.

4. If, however, an observer is included in the system, he will, of
course, still see that the given electron passes either through hole 1 or
through hole 2 and no separation occurs. This is because the observation
process distorts the true picture of electron behavior because it is
accompanied by an electron-photon interaction, which perturbs the
behavior of the electron so much that the interference disappears.

Problem 3. Find the solution of the stationary Schrödinger wave
equation for a hydrogen-like atom in general form.

Solution. The stationary Schrödinger equation (Section 6.6.3.1)
has the form − ℏ2𝑚 Δ𝜓 + 𝑈 (𝑟)𝜓 = ℰ𝜓

Since in the hydrogen-like atom
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𝑈 (𝑟) = − 𝑍𝑒4𝜋𝜀 𝑟,
then the Schrödinger equation in the spherical coordinate system1𝑟 𝜕 (𝜓𝑟)𝜕𝑟 + 1𝑟 1sin 𝜃 𝜕𝜕𝜃 sin 𝜃 𝜕𝜑𝜕𝜃 + 1sin 𝜃 𝜕 𝜓𝜕𝜑= − 2𝑚ℏ ℰ + 𝑍𝑒4𝜋𝜀 𝑟 𝜓

We are looking for a solution in the form of

ψ (r, θ, φ) = ψ1 (r) ψ2 (θ, φ),

In this case, the original equation splits into two equations for the
functions ψ1 and ψ2, namely1𝑟 𝑑 (𝑟𝜓 )𝑑𝑟 = − 2𝑚ℏ ℰ + 𝑍𝑒4𝜋𝜀 𝑟 𝜓 ⋅ 1sin 𝜃 𝜕 𝜓𝜕𝜑+ 1sin 𝜃 𝜕𝜕𝜃 sin 𝜃 𝜕𝜓𝜕𝜃 == − 2𝑚 𝑟ℏ ℰ + 𝑍𝑒4𝜋𝜀 𝑟 𝜓 .

The first is an ordinary homogeneous differential equation of the
second order with variable coefficients. It allows for a fairly simple
solution. The solution of the second equation is sought by analogy with
the general solution in the form of𝜓 (𝜑, 𝜃 ) = 𝜓 (𝜑)𝜓 (𝜃)

Let us dwell in more detail on the solution of the first equation.
This equation is simplified and written in the form𝑑 𝜉𝑑𝜌 − 𝜎 − 2𝜌 𝜉 = 0
by means of substitution
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𝜉 = 𝜌𝜓 , 𝜌 = 𝑟𝑟 , 𝜎 = ℰℰ ,
where r1 and Ɛ1 are, respectively, the values of these quantities for the
first Bohr orbit, namely𝑟 = 4𝜋𝜀 ℏ𝑚 𝑒 ; ℰ = 𝑚 𝑒32𝜋 𝜀 ℏ .

The resulting equation is solved by substitution𝜉(𝜌) = 𝑒 𝑞(𝜌),
and q(ρ) is found as a power series

𝑞(𝜌) = 𝑎 𝜌 ,
where α is an arbitrary integration constant.

Due to its arbitrariness, it is chosen so that

α2 = – σ > 0.

The coefficients of ai in the power series q(ρ) are arbitrary
constants. Substituting ξ(ρ) into the original equation gives the following
recurrence formula for the coefficients ai𝑎 = 2(𝛼𝑖 − 1)𝑖(𝑖 + 1) 𝑎

In order to get all the coefficients ai from  this  formula,  one  of
them, for example a1, must be given. It is common to set a1 = 1. As the
order of ai increases, i.e., as i increases, when i >>1𝑎 ≈ 2𝛼𝑖 𝑎
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This means that 𝑎 = 2𝛼2 ⋅ 1𝑎 = 2𝛼3 ⋅ 2𝛼2 ⋅ 1𝑎 = 2𝛼4 ⋅ 2𝛼 ⋅ 2𝛼1 ⋅ 2 ⋅ 3…𝑎 = (2𝛼)𝑖! ⎭⎪⎪⎪
⎬⎪
⎪⎪⎫

From the theory of series (see Appendix 2) it follows that

𝑒 = (2𝛼)𝑖! 𝜌 .
Substitution yields

𝑒 = 𝑎 𝜌 ;  𝜓 (𝜌) = 1𝜌 𝑒 .
Let us then choose an arbitrary constant α in such a way as to

provide the obvious condition that follows from the possible real behavior
of the electron inside the atom. It is logical to assume that if ρ → ∞, then
ψ1 (ρ) → 0 . This condition will always be satisfied if we set α = 1 / n,
and n = 1, 2, 3, ...

In this case

𝑎 = 2 𝑖𝑛 − 1𝑖(𝑖 + 1) 𝑎 ,
𝜓 (𝜌) ≈ 1𝜌 𝑒 ,
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and 𝜎 = −𝛼 = − 1𝑛
This means that when i >> 1𝑎 = 2𝑛 𝑖!.
In other words, when i → ∞ ai → ∞. Consequently, ξ(ρ) for large

α is finite and 𝜓 (𝜌) = 𝜉(𝜌)𝜌
at large α tends to zero.

On the other hand, from the condition of energy quantizationℰ = − 1𝑛 ℰ
The number n sets the allowed discrete values of the energy of the

electron bound in the atom. It characterizes the so-called energy levels of
this electron. It is also known that the principal quantum number
determines the state of the electron inside the atom and is consistent with
experiment as well as Bohr's postulates.

Thus, when Ɛ < 0 (the electron is bound inside the atom), the
energy spectrum of the electron is a discrete sequence of energy levels,
visually depicted in the figure. As can be seen from the figure, the energy
spectrum of the electron bound in the atom in the quantum-mechanical
view differs significantly from the energy spectrum in the classical view
(see Figure 7.10).
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In the general case of the hydrogen-like atom, the electron state
inside the atom is determined not only by the radial spherically symmetric
wave function ψ1(r), but also by the spherical wave function ψ2(θ, φ).

The solution of this function is found by analogy with the general
solution, namely

ψ2(θ = ψ’2(φ) ψ’’2(θ),

For the functions ψ'2 and ψ''2 after substitution we obtain𝑑 𝜓 (𝜑)𝑑𝜑 = − 2𝑚 𝑟ℏ ℰ + 𝑍𝑒4𝜋𝜀 𝑟 sin 𝜃𝜓 (𝜑),𝑑𝑑𝜃 sin 𝜃 𝑑𝜓 (𝜃)𝑑𝜃 − 2𝑚 𝑟ℏ ℰ + 𝑍𝑒4𝜋𝜀 𝑟 𝜓 (𝜃) = 0.
The solution of these equations (given without derivation) gives𝜓 (𝜑) = 𝑒 ,



218

𝜓 (𝜃) = 𝑐(1 − 𝑥 )| | 𝑑 | |𝑑𝑥 | | (𝑥 − 1) ,
х = сos θ(1 − 𝑥 )| | = sin 𝜃| |(𝑥 − 1) = − sin (𝜃)

Problem 4. Calculate, in first approximation, the energy value of
the ground state of the hydrogen atom.

Solution. This problem is solved according to the semi-classical
theory, which does not use the Schrödinger wave equation, but proceeds
from a combination of the laws of classical and quantum mechanics.

This approach makes it possible to find a solution to a number of
problems of quantum mechanics. These solutions are approximate,
because the combination of the laws of classical and quantum mechanics
is approximate and admissible only within certain limits. In addition,
uncertainty relations are imprecise equations and allow only an order of
magnitude to be estimated. The application of semi-classical theory to
calculate, in first approximation, the parameters of the ground state of the
hydrogen atom and hydrogen-like atoms is acceptable in principle.
Indeed, on average, the hydrogen atom remains in the ground state for
quite a long time (almost infinitely long), and from this point of view
obeys the laws of classical mechanics with corrections introduced by the
uncertainty relations in the ground state.

From the classical point of view, the total energy Ɛ of the
hydrogen atom (hydrogen-like atom) in the ground state, i.e. in the
conditionally stationary orbit, is defined as the sum of the kinetic energy
of the rotating electron of the atom



219

ℰ = 𝑚 𝜐2 = 𝑃2𝑚
and the potential energy of its Coulomb interaction with the nucleus𝑈 = − 𝑒4𝜋𝜀 𝑟
where me is the mass of the electron;

r is the orbital radius of the electron.

It is, in this way,ℰ = 𝑃2𝑚 − 𝑒4𝜋𝜀 𝑟 (1)

Let us now introduce a correction to this classical equation
derived from the uncertainty relation for momentum

ΔP Δr ≈ ħ (2)
As a first approximation, we can assume that in the general case

the uncertainties ΔP and Δr are determined from the assumption that

ΔP ≅ Р,

Substitution in the uncertainty relation (2) gives𝑃 = ℏ𝑟 (3)

Assuming the approximate equality (3) to be strict, we substitute
it into (1) and obtainℰ = ℏ2𝑚 𝑟 − 𝑒4𝜋𝜀 𝑟 (4)

On the other hand, it is known that in the ground state the system
is at the lowest possible energy level (n = 1). This means that in this state
there must be a condition of minimum energy
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𝑑ℰ𝑑𝑟 = 0 (5)

From (4) and (5) it follows therefore that− ℏ𝑚 𝑟 + 𝑒4𝜋𝜀 𝑟 = 0 (6)

where r0 is the radius of the orbit in the ground state. This radius is called
the radius of the first Bohr orbit in honor of Niels Bohr, who first
calculated it based on the postulates of the theory of the atom.

It follows from (6) that𝑟 = 4𝜋𝜀 ℏ𝑚 𝑒 . (7)

Substituting the values of constants (Appendix 6) in equations (4)
and (7) we obtain for the energy of the ground state of the atom in the
first approximation the valueℰ = 𝑚 𝑒32𝜋 𝜀 ℏ ≅ −13.6 𝑒𝑉.

Problem 5. Show that the results of the calculations performed in
Problem 4, based on the uncertainty relation, directly follow also from
the postulates of Bohr theory.

Solution. According to Bohr's semi-classical theory, the atom
corresponds to Rutherford's model.

From the quantization condition proposed by Bohr in accordance
with his postulates (see section 7.2.4 and equations 7.53), it follows that
the angular momentum of the electron

m0 υ rn = n ħ, n = 1, 2, 3, ...

where rn is the radius of the nth orbit of the electron.

From here
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𝑟 = 𝑛ℏ𝑚 𝜐
Since, according to Rutherford's model of the atom for a

stationary orbit, the Coulomb force of attraction of the electron by the
nucleus is balanced by the centripetal force, then𝑚 𝜐𝑟 = 𝑍𝑒4𝜋𝜀 𝑟 ,
where Z is the charge of the nucleus

From here 𝑟 = 4𝜋𝜀 𝑛 ℏ𝑍𝑚 𝑒
For a hydrogen atom in the ground state Z = 1 and n = 1, m0 = me,

therefore 𝑟 = 4𝜋𝜀 ℏ𝑚 𝑒
which corresponds to equation (7) of Problem 4.

Problem 6. Find the wave function of a microparticle localized in
a three-dimensional rectangular potential well, see Figure 6.29 (potential
box) with sides l1; l2; l3.

Solution. A microparticle in a potential well is in a stationary
state, which is described by the stationary Schrödinger equation− ℏ2𝑚 Δ𝜓(𝑥, 𝑦, 𝑧) + 𝑈 (𝑥, 𝑦, 𝑧) = ℰ𝜓(𝑥, 𝑦, 𝑧), (1)

where ψ (x, y, z) is the desired wave function.

In the stationary state defined by the well,
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Up (x, y, z) ={0 - for any ( x, y , z ) inside the well, including
on its walls
∞ - for any ( x, y , z ) outside the well.

(2)

In the Cartesian coordinate systemΔ𝜓(𝑥, 𝑦, 𝑧) = 𝜕 𝜓𝜕𝑥 + 𝜕 𝜓𝜕𝑦 + 𝜕 𝜓𝜕𝑧 .
Equation (1) outside the well

Δψ – α2ψ = 0, (3)
where 𝛼 = 2𝑚ℏ 𝑈 − ℰ → ∞ (4)

The finiteness condition (3), taking into account (4), is provided
only under the condition

ψ (x, y, z) = 0, (5)
Equation (5) is the solution to the problem outside the well. Inside

the well

Δψ + k2ψ = 0, (6)

𝑘 = 2𝑚ℰℏ . (7)

The boundary conditions of the problem in this case are the
requirements following from (2), according to which on the pit walls ψ
(x, y, z) = 0 , i.e.𝜓(0, 𝑦, 𝑧) = 𝜓(𝑥, 0, 𝑧) = 𝜓(𝑥, 𝑦, 0) = 0𝜓(𝑙 , 𝑦, 𝑧) = 𝜓(𝑥, 𝑙 , 𝑧) = 𝜓(𝑥, 𝑦, 𝑙 ) = 0  (8)

We look for a solution of equation (6) in the form

ψ (x, y, z) = a φ(x) φ(y) φ(z). (9)
Substituting (8) into (6) gives
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𝜑′′(𝑥)𝜑(𝑥) + 𝜑′′(𝑦)𝜑(𝑦) + 𝜑′′(𝑧)𝜑(𝑧) = −𝑘 (10)

Relation (10) is possible only when𝜑 (𝑥) + 𝑘 𝜑(𝑥) = 0𝜑 (𝑦) + 𝑘 𝜑(𝑦) = 0𝜑 (𝑧) + 𝑘 𝜑(𝑧) = 0  (11)

where

k1
2 + k2

2 + k3
2 + = k2 (12)

From (8), taking into account (11), we obtain that

ψ (x, y, z) = a sin(k1x) sin(k2y) sin(k3z). (13)
From (11), given the boundary conditions (7), it follows that𝑘 = ± 𝜋𝑙 𝑛 ; 𝑛 = 1, 2, 3 …𝑘 = ± 𝜋𝑙 𝑛 ; 𝑛 = 1, 2, 3 …𝑘 = ± 𝜋𝑙 𝑛 ; 𝑛 = 1, 2, 3 …⎭⎪⎬

⎪⎫ (14)

From (12) and (14), taking into account (7), we obtain thatℰ , , = 𝜋 ℏ2𝑚 𝑛𝑙 + 𝑛𝑙 + 𝑛𝑙 . (15)

Since the square of the absolute value of the wave function in its
physical sense determines the probability of detection of a microparticle
at a given point of volume V = l1l2l3, the probability of detection of a
particle at any arbitrary point is equal to the sum of probabilities at all
points and equals 1, i.e.

|𝜓| 𝑑𝑉 = 1. (16)
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Equation (16) is called the normalization condition of the wave
function.

Substituting in (16) the solution (13) taking into account (15)
gives for a constant value of a the value

𝑎 = 8𝑙 𝑙 𝑙 ,
wherefore finally

𝜓 (𝑥, 𝑦, 𝑧) = 2√2𝑙 𝑙 𝑙 sin ± 𝜋𝑛𝑙 𝑥 sin ± 𝜋𝑛𝑙 𝑦 sin ± 𝜋𝑛𝑙 𝑧
Problem 7. Determine the de Broglie wavelength associated with

a free-moving electron with energy 102 eV.

Solution. According to de Broglie's hypothesis of particle
corpuscular-wave duality, each free-moving microparticle with energy Ɛ
and momentum P can be compared with a de Broglie monochromatic
wave, for which 𝜔 = ℰℏ𝜆 = 2𝜋ℏ𝑃  (1)

where ω is the cyclic frequency of the wave;

λ is the wavelength.

From the second equation of the system (1) it follows that𝑃 = 𝑚 𝜐; 𝜐 = 𝜆𝜈; 𝜐 = 𝜆 𝜔2𝜋. (1)
Substitution in (1) gives
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𝜆 = 2𝜋ℏ2𝜋𝑚 𝜆𝜔 ;
𝜆 = 4𝜋 ℏ𝑚 𝜔 .

From the first equation 𝜔 = ℰℏ
so 𝜆 = 4𝜋 ℏ𝑚 ℰ ,
from which 𝜆 = 2𝜋ℏ𝑚 ℰ,
or 𝜆 = 2𝜋ℏ𝑐ℰ ;

Finally 𝜆 = 2𝜋 ⋅ 1.05 ⋅ ⋅ 3 ⋅ 1010 ⋅ 1.6 ⋅ 10 ;
λ = 12,36 · 10-3 μm

Problem 8. Determine the radius of a water molecule, assuming
that the molecule has a spherical shape. Density of water under normal
conditions

ρW ≈ 103 kg/m3
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Solution. The water molecule H2O consists of 10 protons and 8
neutrons (the mass of the electrons is neglected). Hence the mass of one
water molecule, mW ≈ 18 · 1.67 · 10 -27 = 3,006 · 10 -26 kg , and its volume𝑉 = 18 ⋅ 1.67 ⋅ 1010 ≈ 3 ⋅ 10  𝑚 .

On the other hand, 𝑉 = 𝜋𝑟 , therefore, the radius of the water
molecule

𝑟 = 3𝑉4𝜋
𝑟 = 9 ⋅ 104 ⋅ 3.14 = 7 ⋅ 10 ≈ 1.92 ⋅ 10  𝑚

Problem 9. Determine the value of the Fermi level energy of the
metallic sample.

Solution. Depending on the nature of the interactions of atomic
nuclei with the electrons of the outer shells, all solids are divided into
metals (conductors of electric current) and dielectrics (non-conductors).
In metals, the electrons of the outer shell of atoms are weakly bound to
their nuclei. In the first approximation, they can be considered free. Since
the vast majority of solids have a crystalline structure, the nuclei of their
atoms ideally form an ordered periodic crystal lattice. From the energy
point of view, a crystal lattice is a set of potential wells separated by
potential barriers. Electrons moving through the crystal lattice move from
one potential well to another, seeping through potential barriers in
accordance with the tunneling effect. The energy of free electrons in
metals is high enough and the height of the potential barriers is so low
that the electrons move freely throughout the crystal lattice, forming,
ideally, a perfect electron Fermi gas. At absolute zero temperature, all
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levels below the so-called Fermi level are completely filled with
electrons, and above this level are free of electrons.

The wave functions of free electrons of a Fermi gas obey, as is
known, the stationary Schrödinger equation− ℏ2𝑚 Δ𝜓 = ℰ𝜓.

Let the metal sample have a cubic shape with side L for simplicity.
We look for the solution of this equation in the form of a running plane
wave 𝜓 (𝑟, 𝑡) = 𝑐𝑒 ⃗, ⃗ ,
where �⃗� is the wave vector with components kx, ky, and kz;𝑟 is the position vector;

c is a constant.

We find the constant with from the normalization condition

|𝜓| 𝑑𝑉 = 1
where V = L3 is the volume of the sample.

By integrating, we get 𝑐 = 1𝐿√𝐿.
It is natural to assume that the wave function at the sample

boundary is periodic with period L, i.e.
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𝜓(𝑥 + 𝐿, 𝑦, 𝑧) = 𝜓(𝑥, 𝑦, 𝑧)𝜓(𝑥, 𝑦 + 𝐿, 𝑧) = 𝜓(𝑥, 𝑦, 𝑧)𝜓(𝑥, 𝑦, 𝑧 + 𝐿) = 𝜓(𝑥, 𝑦, 𝑧)
This means that this system of equations can be considered as

boundary conditions for the function ψ (x, y, z).

Substitution gives for quantum numbers of wave vector
components 𝑘 = 2𝜋𝐿 𝑛 ; 𝑘 = 2𝜋𝐿 𝑛 ; 𝑘 = 2𝜋𝐿 𝑛 ,
where nx, ny, nz = 0, ± 1, ± 2, ± 3, ...

Since in the general case for a free electronℰ = 𝑃2𝑚 = ℏ 𝑘2𝑚 ,
then ℰ = ℏ2𝑚 2𝜋𝐿 𝑛 + 𝑛 + 𝑛 .

Thus, the quantum states of free valence electrons in a
conventionally cubic metal sample are defined by 4 numbers - nx, ny, nz,
and ms, where ms is the spin quantum number equal to ± .

Combinations of these numbers take values1, 0, 0, ± 12 ;   0, 1, 0, ± 12 ;    0, 0, 1, ± 12−1, 0, 0, ± 12 ;    0, −1, 0, ± 12 ;   0, 0, −1, ± 12
The ground level of the electron corresponds to the minimum

energy for nx = ny = nz = n = 0 (Ɛ0 = 0). Two electrons with antiparallel
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spins are placed on this level. The next level, for which n2
x + n2

y + n2
z =

n = 1, can be occupied by 12 electrons. Starting from the 15th, the
electrons are placed on the second level (n =  2).  This  already
accommodates 24 electrons, etc.

Thus, the placement of electrons occurs at increasingly higher
levels until all the electrons are used up. At absolute zero temperature, all
lower levels will be filled with electrons and all upper levels will be
empty.

Let us introduce the phase space of the wave vector kx, ky, kz,
which corresponds, as we know, to (𝑃 = ℏ�⃗�) , the momentum 𝑃 space
with the axes Px, Py, Pz. In this space, all pairs of quantum states of an
electron with parallel and antiparallel spins are represented by points, the
distance between which is equal to 𝑘 =  so that one point has a volume
of 𝑉 = 2𝜋𝐿 .

The surface of equal values of energy in this space is equal toℏ2𝑚 𝑘 + 𝑘 + 𝑘 = 𝑐𝑜𝑛𝑠𝑡
and is shaped like a sphere with radius k.

The result is

𝑘 = √2𝑚ℰℏ
The volume of this sphere is𝑉 =  43 𝜋𝑘
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Since this volume is contained in one point, the number of
quantized states is

𝑁(ℰ) = 2 43 𝜋𝑘2𝜋𝐿 .
Factor 2 corresponds to two spin values for each electron.

After substituting the values of k and V = L3 , we obtain for the
number of levels in the energy interval dƐ

𝑁 = 8𝜋𝑉𝑚 √2𝑚ℰ3(2𝜋ℏ) ℰ.
If we combine a surface of equal energy with a surface whose

radius corresponds to the Fermi level, then, denoting the concentration of
electrons by n, and since nV = N, we find

ℰ = 12ℏ √𝑛𝑚 (3/4𝜋). 
Problem 10. Find the wave function describing the quantum

harmonic oscillator and its energy spectrum, see note to Problem 7 of
Chapter 6.

Solution. Many problems of quantum mechanics, as already
mentioned, are solved based on the method of combination of laws of
classical mechanics and equations of quantum mechanic. Let's apply this
method to solve this problem.

As we know, in classical mechanics a one-dimensional harmonic
oscillator is a particle making harmonic oscillations under the action of
an elastic force (see Section 5.1)

F = – kx.
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 The potential energy of such an oscillator is𝑈 = 𝑘𝑥2 ,
and the natural frequency of oscillation

𝜔 = 𝑘𝑚,
from which 𝑈 = 𝑚𝜔 𝑥2

Substitution into the time-independent Schrödinger equation
gives − ℏ2𝑚 𝑑 𝜓𝑑𝑥 + 𝑚𝜔 𝑥 𝜓2 = ℰ𝜓.

The solution of the problem is thus reduced to the solution of the
resulting second-order differential equation. To simplify the equation, let
us introduce the notation𝜌 = 𝑥 𝑚𝜔ℏ ;    𝛼 = 2ℰℏ𝜔,
then the differential equation takes the form𝑑 𝜓𝑑𝜌 + (𝛼 − 𝜌 )𝜓 = 0,
where 𝜓 = 𝜓(𝜌) = 𝑓(𝜌)𝑒 ;
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𝑓(𝜌) = 𝑏 𝜌 ,
Substituting the solution of f(ρ) into the original equation gives

the recurrence formula for the coefficients bk𝑏 = (2𝑘 + 1 − 𝛼)(𝑘 + 1)(𝑘 + 2) 𝑏 .
The resulting solution, however, does not make physical sense,

since it is given by a divergent series. Indeed, at k → ∞ ρk → ∞ faster
than the coefficients bk to zero. To avoid this divergence, it is necessary
to limit the infinite series, that is, to require that, starting from some k =
n, the coefficients bn= 0, that is, that

2n + 1 – α = 0.

Substituting the value of α gives for the energy spectrum of the
oscillator ℰ  = 𝑛 + 12 ℏ𝜔, 0, 1, 2, ….

Problem 11. Determine the dependence of the specific electrical
conductivity of intrinsic semiconductors on temperature.

Solution. Specific conductivity γ can be determined from Ohm's
law, according to which the dependence of the current density vector 𝐽
on the electric field strength 𝐸 is given by the equation𝐽 = 𝛾𝐸

On the other hand, since the current in the intrinsic semiconductor
is the sum of electron and hole currents with densities 𝐽  and 𝐽 , which
are created by the motion of carriers with average velocities υnav and υpav,
and effective masses mn* and mp*, then
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𝐽 = 𝑛 (−𝑒)𝜐 + 𝑛 𝑒𝜐
and 𝐽 = 𝑒 𝑛 𝜏𝑚∗ + 𝑛 𝜏𝑚∗ 𝐸.

Since holes and electrons in the intrinsic semiconductor generate
and recombine simultaneously with equal probability, their
concentrations are equal and proportional to this probability. Thus,
comparing this expression with Ohm's law and considering that nn = np=
n and denoting 𝑒 𝜏𝑚∗ + 𝜏𝑚∗ = 𝛾 ,
we get that

γ = γ0 n.

Since generation is the result of the transition of an electron from
the valence zone to the conduction zone by jumping over the forbidden
zone, according to Boltzmann's formula𝑝 ≈ 𝑒 ℰ

Finally 𝛾 =  𝛾 𝑒 ℰ .
Problem 12. It is known that with penetration into the depth of

the substance, the size of its structural elements and the time of the
processes decrease. At the same time, according to the uncertainty
relations, the uncertainties of energy increase. Taking the above into
account, calculate the time of the processes of electromagnetic and strong
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interactions at different structural levels, as well as the energies
corresponding to these levels.

Solution. 1. Electromagnetic processes are known to be
concentrated at atomic and molecular levels with maximum possible
dimensions of structural elements (macromolecules) of 10 -9m. Assuming
that the speeds of the processes are finite, i.e., equal to the speed of light,
we find that Δ𝑡 = 103 ⋅ 10 ≈ 3 ⋅ 10  𝑠.

When dimensions and velocities decrease within one or two
orders of magnitude (transition to atomic levels and consideration of slow
processes associated with the motion of particles), the time intervals may
vary within (10-15 to 10-20) s. The structural elements are quite strongly
connected within atoms and molecules. Their kinetic energies compared
to the interaction energies, which are determined by the uncertainty
relations, are equal to Δℰ ≈ ℏΔ𝑡.

Substitution yields

ΔƐ ≈ (1 ÷ 10 5 ) eV.

2. Strong interactions take place at the nuclear and subnuclear
levels.

At the level of nucleon interactions, they occur at a depth of about
10-15 m. Reasoning in the same way as in item 1, we find

∆t ~ 10-23 s

∆Ɛ ~ 100 MeV



235

At the levels of quark-gluon interactions acting at depths of (10-19

to 10-27) m,

∆t ~ (10-27 – 10-34) s

∆Ɛ ~ (103 – 1010) GeV

At the level of the great unification, operating at a depth of (10-30

to 10-32) m.

∆t ~ (10-30 – 10-32) s

∆ Ɛ ~ (1014 – 1016) GeV

Finally, at the level of the assumed action of supergravity at a
depth of 10-35 m

∆t ~ 10-43 s

∆Ɛ ~1019 GeV.

Problem 13. In Section 7.6.8 it is shown that from the classical
point of view under the action of gravitational collapse any body with
mass above a certain value must inevitably and irreversibly be pulled
down to a point (singularity). This requirement is limited, however, by
uncertainty relations. It follows that the singularity is always surrounded
by a Schwarzschild sphere, the radius of which is called the Planck radius,
beyond which both any body and any information disappears. This makes
us think that the Planck length and its corresponding time defines the
minimal possible cell, the quantum of space-time.

What other considerations, besides those mentioned above, are in
favor of the space-time quantization hypothesis?

Solution.

It is known that the most significant disadvantages of quantum
field theory include divergences, which arise as a consequence of the
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assumption of point sizes and charges of elementary particles. This
assumption is essentially borrowed from classical theory, which proceeds
from the notion of the continuity of space-time and its structures.
Continuity of space-time, in turn, means that an infinitely small value of
time corresponds to an infinitely small value of space and vice versa. It
also means that space and time commute everywhere. On the other hand,
it follows from the uncertainty relations that at small space-time scales
the classical notion of space-time homogeneity is violated, which
indicates that at the same scales its continuity and commutability must be
violated. In other words, the idea of point dimensions of space-time
should, from the point of view of quantum theory, lead to the possibility
of motion and propagation of interactions with unlimited speed, which
contradicts the theory of relativity. Under these conditions, it is necessary
to introduce a fundamental length l and its corresponding fundamental
time t, based on the relation 𝑡 = 𝑙𝑐

The fundamental length is introduced from dimensional theory
considerations or from notions of noncommutativity of spatial and
temporal intervals. It is interesting to note that in all cases it is equal to
the Planck length, i.e. 10-35 m.

From gauge symmetry of quantum field theory it follows that
there must also exist a fundamental non-point charge, reflecting,
somehow, internal discreteness and orders of elementary particles.

All this led to generalizations of quantum field theory called non-
local field theory, i.e. field theory that does not work in a point.

Note. The theory of dimensions proceeds from the fact that if it is
known on which quantities the sought quantity depends, then we can
make an equation of dimensions, the left part of which contains the
dimensionality of the sought quantity and the right part contains the
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dimensionality of the constants, i.e. the quantities on which the sought
quantity depends, raised to the power of x, y, z,... By further equating the
indices of the powers of the corresponding dimensions on the left and
right, we form a system of equations from which the unknowns x, y, z,...
are found. The dimensionless coefficients are selected if necessary, based
on various theoretical and experimental data.

Let us illustrate this by the example of the derivation of the
fundamental length formula in quantized space-time, which is the subject
of the present problem.

Let us take as a starting point the postulate that the fundamental
length l is a function of the universal constants that determine the physical
quantities bounding it at the Planck depth, namely:

 - gravitational constant G; at the Planck depth, as indicated, the
electrically weak interaction compensates the strong one, with the result
that gravity is the determinant here;

 - Planck's constant, which determines the effect of the uncertainty
relation;

 - the speed of light, which determines the energy of the particles.

In other words,

l = f (G, ħ, c)

or

[L] = [G]x [ħ]y [c]z,

where

[G] = m3 kg-1 s-2

[ħ] = kg m2 s-1

[c] = m s-1
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Thus, under the conditions of the indicated dimensions

L = ( L3 m-1Т-2)х (L2 mТ-1)у (LT-1)z.

Let's make a system of equations3𝑥 + 2𝑦 + 𝑧 = 1−𝑥 + 𝑦 = 0−2𝑥 − 𝑦 − 𝑧 = 0 ,
from which 𝑥 = 𝑦 = 12𝑧 = − 32

Thus, after substitution we get

𝑙 = 𝐺ℏ𝑐
The obtained value coincides completely with the formula for the

fundamental length derived by another method (see Section 7.6.8).
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Appendix to Part 5

Problems for chapter 7

Problem 132. How many photons n is emitted by a helium-neon
laser of wavelength λ = 630 nm with power N = 5 mW in time t = 10 s in
continuous mode?

Problem 133. How will the wavelength of X-rays change as it
interacts with matter? Why do these interactions result in electrons
escaping from the substance? At what speed and kinetic energy do the
electrons fly out? At what angle in relation to the incident radiation do
they fly out?

Problem 134. Nuclear fusion reactions, as we know, can only
take place at very high temperatures. For this reason they are also called
thermonuclear. Explain why these reactions require high temperatures.
Calculate the average temperature at which it is theoretically possible to
carry out fusion reactions of the hydrogen-helium cycle. In reality, this
temperature may be lower. Explain why.

Problem 135. How do you calculate the energy and specific
bonding energy of an atomic nucleus? Show by the example of the
aluminum nucleus  𝐴𝑙.

Problem 136. From the point of view of quantum theory, the
behavior of the electron is described by the wave function, which is a
solution of the Schrödinger equations. However, in some cases it is
acceptable, with a good enough approximation, to consider the electron
as a semiclassical particle, which, on the one hand, moves inside the atom
in a circular orbit around a stationary nucleus, and, on the other hand, can
be represented as a De Broglie wave. It is required to calculate the radius
r0 of the electron orbit in the ground state of the hydrogen atom, the
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mechanical energy W, and the ionization energy of the atom, taking into
account the above approximation.

Problem 137. Determine the electrical conductivity of intrinsic
and doped semiconductors.

Problem 138. Before the discovery of neutrons by Sir James
Chadwick in 1932, it was assumed that the atomic nucleus consisted of
protons and electrons. However, this assumption led to the so-called
"nitrogen disaster" because it conflicted with the experiment. Explain the
essence of the nitrogen disaster and how it was solved with the discovery
of neutrons.

Problem 139. Can a neutrino laser be built?

Problem 140. Monochromatic light polarized in the vertical plane
is incident on a polaroid whose optical axis forms an angle φ with the
vertical. Will a single photon of this light pass through the polaroid?

Problem 141. It is known that in the helium atom (Z = 2) both
electrons are in the ground state at the lowest level, but their spins,
according to the Pauli exclusion principle, are antiparallel. And how can
we line up their spins in the same direction?

Solving the problems of chapter 7

132. The energy emitted by the laser, Ɛ = Nt. The energy of one
photon Ɛ0 = hν = hc/λ. Number of photons emitted by the laser𝑛 = ℰℰ = 𝑁𝑡𝜆ℎ𝑐 .

Substituting numerical values gives𝑛 = 5 ⋅ 10 ⋅ 630 ⋅ 106.62 ⋅ 10 ⋅ 3 ⋅ 10 = 1.6 ⋅ 10 .
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133. As a result of interaction with matter, radiation deviates from
the direction of its propagation by a certain angle θ. Radiation photons
transfer part of their energy to the free electrons of matter. As a result, the
frequency of radiation decreases and the wavelength λ increases by Δλ.
Part of the electrons, which increased their energy due to radiation,
increase their kinetic energy and fly out of the substance at an angle α to
the direction of the incident radiation. The considered process of
interaction of radiation with matter is called Compton scattering, and the
angle θ is the Compton scattering angle. The current created by the
escaped electrons is called a photoelectric current, and the process of the
creation of a photoelectric current by irradiating a substance is called a
photoelectric effect.

Compton scattering is described using equations for the laws of
conservation of momentum and energy. Consider the interaction of an
electron of mass m0 and a photon of radiation with energy and
momentum W0, Р⃗  before scattering and W, Р⃗  after scattering,
respectively. For simplicity, let us assume that in the initial state (before
scattering) the electron was at rest, and its final energy and momentum,
respectively, were We, Р⃗ . Then according to the laws of conservation of
energy and momentum (see figure).
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m0c2 + W0 = We + WР⃗ = Р⃗ + Р⃗.

It is obvious that𝑊 = ℎ𝑐𝜆 ;    𝑊 = ℎ𝑐𝜆 + Δ𝜆 ;   𝑊 = 𝑐 𝑚 𝑐 + 𝑃
(relativistic equation for energy);𝑃 = ℎ𝜆 ;    𝑃 = ℎ𝜆 + Δ𝜆

It follows from the figure that𝑃 = 𝑃 + 𝑃 − 2𝑃 𝑃 cos 𝜃.
Substitution and the corresponding transformations giveΔ𝜆 = 2ℎ𝜆𝑚 𝑐 sin 𝜃2 .
The kinetic energy of the electron is equal to the energy lost by

the photon 𝑊 = ℎ𝑐𝜆 − ℎ𝑐𝜆 + Δ𝜆 = ℎ𝑐𝜆 + 1 + 𝜆 𝑚 𝑐2ℎ sin 𝜃
From the triangle (see figure), according to the Law of sines, it

also follows that sin 𝛼 = ℎ𝑐 sin 𝜃𝜐(𝜆 + Δ𝜆)(𝑊 + 𝑚 𝑐 ),
where
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𝜐 = 𝑐 1 − 𝑚 𝑐ℰ .
134. Under certain conditions, the light atomic nuclei combine to

form heavier nuclei. This is, for example, the process of fusion of
hydrogen isotope nuclei to form helium nuclei. Since the mass of free
particles is always greater than the mass of particles bound in the atomic
nucleus, a so-called mass defect occurs when the particles are combined,
which appears in the form of released intranuclear energy. Once inside
the nucleus, protons are mutually attracted and form a stable bond with
neutrons, even though they simultaneously experience strong
electrostatic repulsion as like-charged particles. This is explained by the
fact that, starting from distances comparable with the size of the nucleus,
that is, equal to or smaller than Rn = 10–14 – 10–15 m, the nuclear particles
are affected by the intranuclear force of attraction of strong interaction,
which is about 100 times greater than the Coulomb force of electrostatic
repulsion. Being outside the nucleus, where the nuclear forces are
practically zero, the proton is only subject to electrostatic repulsion. In
order to get closer to the nucleus, and moreover to penetrate it, the proton
must have kinetic energy comparable to the value of its repulsive electric
potential U, which creates a potential barrier, which according to the laws
of the electrostatic field is described by the equation�⃗�  = –  𝑔𝑟𝑎𝑑 𝑈.

Hence, with Rn = 10-14 m𝑈 = 𝑞4𝜋𝜀 𝑅 ≈ 0.1 𝑀𝑒𝑉.
This value is in good agreement with the value obtained

experimentally. In order to overcome this potential barrier, the proton
must have kinetic energy
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𝑊 = 𝑚 𝜐2 = 𝑈.
This means that the proton must be accelerated to a velocity of

approximately 4,35 · 106 m/s. This velocity corresponds to the average
temperature following from the relation

Wkav = kTav,

where k is Boltzmann constant (k = 1.38 ∙ 10-23 J/K).

Substitution yields

Тav = 1,15 · 109 К.

In reality, the fusion reaction in environments with a large number
of particles takes place at lower temperatures. For example, on the Sun,
the reaction takes place at an average solar temperature in its interior of
0.4 ∙ 107 K. This is explained by the fact that, according to the laws of
distribution, some of the particles have a temperature higher than the
average. In addition, according to quantum effects, particles with lower
energy leak through a higher potential barrier (tunnel effect).

135. The bonding energy Ɛb of an atomic nucleus is determined
through the value of the mass defect of the nucleus Δm by the Einstein
equivalence formula for mass and energy

Ɛb = Δmc2

The mass defect of a nucleus with atomic number Z, mass number
A with neutron mass mn and their number N = A – Z, proton mass mp and
their number Z, electron mass me, nucleus mass mv equal to the mass of a
neutral atom mat minus the mass of all its electrons Zm e is determined
by the formula (item 7.4.10.2)

Δm = Z (mp + me) + Nmn – mat.

For the aluminum atom
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Z = 13, A = 27, N = 14.

Substitution yields

mp + me = 1,00728 + 0,0005486 amu = 1, 0078286 amu,

mn = 1,00866 amu mat = 26,981 amu.

The value of c2, expressed in amu, will be

c2 = Ɛ / m = 8.987 · 1016 J/kg = 931.5 MeV/amu

Here amu is an atomic mass unit used to express the mass of
elementary particles, atoms, and molecules. By definition, 1 amu = 1/12
of the mass of the carbon nuclide 12C. The final result is

Δm = 13 · 1,0078286 + 14 · 1,00866 – 26,981 = 13,1018 –
26,9810 = 0,242 amu

Ɛb = 0,242 amu. · 931,5 MeV/amu = 225,4 MeV.

The specific bonding energy is the value Ɛb/A, i.e., the amount of
bonding energy per nucleon. From here

Ɛb/A = 225.4/27 = 8.348 MeV/nucleon.

136. The de Broglie wavelength λ as is known (see Section 6.6.3),𝜆 = 2𝜋ℏ𝑚 𝜐.
On the other hand, according to the uncertainty relation for

momentum Δ𝑃Δ𝑟 ≥ ℏ2.
Let us assume, without violating generality, that the uncertainty

of the position of an electron in an atom is within the radius of its orbit,
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and the uncertainty of momentum is within momentum itself. Then the
given uncertainty relation by order of magnitude will be

P r ~ ћ.

It can be assumed that in the ground state, which is characterized
by minimal energy and classical behavior, this approximation becomes
strict and 𝑃 = 𝑚 𝜐 = ℏ𝑟.

Substituting the obtained value of the momentum into the formula
for the de Broglie wavelength, we obtain

λ = 2πr

In other words, the de Broglie wavelength of the electron in the
ground state coincides with the length of the circular orbit of the electron
in this state.

The total mechanical energy of an electron in orbit is the sum of
the negative Coulomb energy and the kinetic energy of the electron. Since𝑊 = 𝑚 𝜐2 = 𝑃2𝑚 ;    𝑃 = ℏ𝑟,
then 𝑊 = ℏ2𝑚 𝑟 − 𝑒4𝜋𝜀 𝑟.

In the ground state, where the energy is minimal, the condition of
its minimum = 0 applies , from which it follows that in this state
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𝑟 = 𝑟 = 4𝜋𝜀 ℏ𝑚 𝑒 = 0.53 ⋅ 10 𝑚;    𝑊 = 𝑊 = − 𝑚 𝑒32𝜋 𝜀 ℏ= −13.6 𝑒𝑉.
The resulting value of the mechanical energy of the electron

expresses the magnitude of the electron's bonding energy in the ground
state, as indicated by the minus sign. To ionize an atom, it takes a positive
energy equal in magnitude to the bonding energy.

137. The electric current density J of a semiconductor is the sum
of the current densities of electronic Je and hole Jp conduction. Expressed
in terms of the concentrations of carriers in the conduction and valence
zones of the semiconductor's own nn and np, their average velocities υn

and υp, and the carriers' charge e, the current density is

J = Jn + Jp = nn (– e) υn + np e υp.

The velocities are determined, based on Newton's second law,
through the free path times tn, tp and the effective masses of carriers mn,
mp, as well as taking into account the acting Coulomb forces, expressed
in terms of the strength of the external electric field Е⃗. The result is𝐽 = 𝑒 𝑛 𝑡𝑚 + 𝑛 𝑡𝑚 𝐸

Since according to Ohm's law𝐽 = 𝛾𝐸,⃗
where γ is the specific conductivity, then𝛾 = 𝑒 𝑛 𝑡𝑚 + 𝑛 𝑡𝑚 .

Since in intrinsic semiconductors carriers are born in pairs, their
concentrations are equal. On the other side,
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𝑡𝑚 = 𝜐𝑒𝐸
If we denote υ/E = k, then

γ = en (kn + kp)

The value of k is called the mobility of carriers. For a silicon
crystal, for example, kn = 0.13 m2/V s , and kp = 0.047 m2/V s.

Carrier concentrations are determined by their generation
probability or equal recombination probability. These probabilities, in
turn, on the one hand, are proportional to the product of concentrations
(electron and hole meeting) and, on the other hand, according to the laws
of distribution of quantum statistics (see Section 7.5) are proportional to
the exponent of the ratio of the forbidden zone width ΔWg of  a
semiconductor to the thermal energy kT of its carriers. In other words,𝑛 = 𝑛 ~𝑒

It follows that 𝛾 = 𝛾 𝑒𝛾 ≈ 𝑒 𝑡𝑚 + 𝑡𝑚 .
Since the carrier concentration is not the same for doped

semiconductors, following can be written for them𝛾 = 𝛾 𝑒 + 𝛾 𝑒
where the d sign refers to the donor levels and the g sign refers to the
band gap.
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138. The atomic mass of nitrogen is known to be 14. Taking into
account that the mass of the electron is almost 2000 times less than the
mass of the proton, we conclude that if the nitrogen nucleus consists of
protons and electrons, it must contain 14 protons. Since the charge of the
nitrogen nucleus Z = +7, it would have to include 7 electrons neutralizing
the charge of the nucleus. The remaining 7 electrons, which ensure the
neutrality of the nitrogen atom, must have been part of the electron shells
of the atom in this case. In total, therefore, a nitrogen atom would have
28 fermions, each with a spin of 1/2. The total spin of the atom would be
28/2 =14, that is, it would have to be integer, and the atom would have to
be a boson. From the experiment, however, it followed that the nitrogen
atom is a typical fermion. With the discovery of the neutron, this
contradiction was automatically resolved. Indeed, it became clear that
electrons are not part of the nucleus. Since the mass of the neutron turned
out to be approximately equal to the mass of the proton, the nucleus had
to consist of 7 protons and 7 neutrons, and the charge-neutralizing 7
electrons had to be part of the electron shells of the atom, which was
confirmed in practice. The total spin of the nitrogen atom, consisting of
21 fermions, is fractional and equals 10.5, which means that the nitrogen
atom is indeed a fermion. To explain how mutually repulsive protons and
neutral neutrons are held in the nucleus, we had to assume that inside the
nucleus, in addition to the forces of the electrostatic field, the forces of
the intranuclear non-electric field, which was therefore called "strong,"
act significantly superior to them. It has now been established that the
strong interaction does exist and is completely concentrated inside the
atomic nucleus. The interaction constant, which characterizes its
intensity, for strong interactions was indeed about 100 times greater than
for electromagnetic interactions.

139. The laser beam is strictly monochromatic and coherent. In
other words, it is formed by a large number of photons of a certain
wavelength moving in the same direction. All photons in a laser beam are
thus described by the same wave function and are therefore in the same
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state. Photons have an integer spin equal to one, that is, they are bosons,
to which the Pauli exclusion principle does not apply. That is why no
restrictions are placed on the possibility of laser emission by photons. In
contrast, the spin of neutrinos is 1/2, so neutrinos are typical fermions and
obey the Pauli exclusion principle. This means that in a laser beam of
neutrinos there cannot be more than two identical particles with opposite
spins. It follows that a beam consisting of a large number of identical
neutrinos cannot in principle be obtained, and a beam consisting of
different neutrinos will not be coherent and cannot propagate in a strictly
specified direction, that is, it will not be laser.

140. It is known that the ratio of the intensity of polarized light
passed through the polaroid to the intensity of incident light is
proportional to cos2φ. This means that at φ = π/2 the photon will not pass
through the polaroid.

141. In order to give the spins of both electrons the same direction,
it is necessary to change the state of one of the electrons, for example, to
move it from the ground state to the excited state. Otherwise, both
electrons would be in the same state, which is impossible because
electrons whose spin is half-integer (equal to 1/2) are fermions and
therefore, according to the Pauli exclusion principle, cannot be in the
same state. To give the spins the same direction, we can place helium
atoms in an external magnetic field with induction of В⃗ and give one of
the electrons of their atoms the energy W = ћω. This energy is obtained
by the interaction of the magnetic field with the electron's own magnetic
moment. Let us recall (see Section 4.2.2.6) that the magnetic moment of
a closed current is the value of 𝑀 =  𝑖𝑆, where i is the magnitude of the
current, 𝑆  is the vector of the area of the closed loop with current.
Proceeding from the semi-classical theory, we will consider the motion
of an electron of mass m with charge e inside the atom along a circular
orbit of radius r with speed υ. In this case, the electron forms a circular
current with force i = eυ /2πr, whose magnetic moment is equal to



251

𝑀 = 12 𝑒𝜐𝑟 = 12𝑚 𝑒𝑚𝜐𝑟.
The value m υ r is nothing but the orbital mechanical momentum

of the electron, which in quantum interpretation is quantized and,
accordingly, is a multiple of ћ. Thus, for the magnetic moment of the
electron in the ground state we obtain𝑀 = 𝑒ℏ 2𝑚 = 𝜇 = 0.972 ⋅ 10  𝐴𝑚

The value μE is the so-called Bohr magneton, which, on the one
hand, according to Dirac's relativistic theory, is equal to the electron's
intrinsic magnetic moment corresponding to spin, and, on the other hand,
serves as the unit of magnetic moment in atomic physics and elementary
particle physics. When helium atoms are introduced into an external
magnetic field, the spins of their electrons are oriented along the direction
of the field, so the spin of one of the electrons will flip, and both spins
will be oriented in the same direction. Under the influence of the energy
of the magnetic field, the electron will go into an excited state, changing
its energy by the value ΔW = ћω. If we change the spin direction in a
magnetic field with induction B, the energy of the electron will change
by ћeB/m or 2μBB. It follows that the field induction must be greater than
or equal to the value of 𝐵 = ℏ𝜔2𝜇 = 𝜋ℏ𝑐𝜆𝜇 .

Assuming that the electron emits in the visible spectrum and that,
therefore, the wavelength of the emitted light is in the middle of the
emission spectrum (λ = 0,5 · 10 –6 m), we find that

В ≥ 2 · 104 Wb/m2
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Appendices
Appendices 1-3 provide the basics of applied mathematics, and

Appendix 4 provides problems to all sections of the textbook with
solutions.

Appendix 1. Fundamentals of tensor calculus

Tensor calculus is a branch of mathematics that studies the
properties of mathematical quantities and includes number theory,
algebra, vector algebra, geometry, etc.

1.1. Fundamentals of Number Theory

A number is a quantitative measure of a mathematical quantity,
which, in turn, is defined as a generalized concept of a measure. In
accordance with this, mathematics distinguishes between algebraic
quantities or tensors and geometric quantities that characterize measures
of geometric shapes. A special case of geometric quantities are
trigonometric quantities.

A distinction is made between real, imaginary and complex
numbers. Actual numbers are integers, fractions, positive and negative,
rational and irrational. Positive integers arranged in ascending order
form a natural infinite series (1, 2, 3, ...). Integers can also be even and
odd, simple and composite. Numbers and the letters expressing them are
connected by six operations – addition, subtraction, multiplication,
division, exponentiation, and extraction of the root. The numbers, the
letters expressing them, and the actions connecting them form algebraic
expressions. The rules for performing actions on numbers and letters are
learned in basic school and are given in math reference books. If a
mathematical quantity is expressed by one or more numbers, it is called
a tensor. In other words, a number is a special case of a tensor.
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1.2. Geometric quantities

Geometry is a branch of mathematics that studies the shapes and
sizes of graphic images, which are called geometric shapes. The simplest
geometric figure is a point, that is, a figure without shape or size. A
geometric figure that has no width or thickness is called a line. The line
forms a continuous set of points. An infinite number of lines can be drawn
through two points. By measuring the distance between these points,
moving along each of these lines, it is easy to see that these distances are
not equal to each other. The shortest distance between these points is
obtained by moving along a single line, which is called a straight line.
The other lines are polygonal chain or curved line. A polyline is a line
consisting of separate straight sections that do not lie on the same straight
line. A straight line bounded on one side is called a ray, and a straight
line bounded on two sides is called a line segment. The segment is
measured by length. A shape formed by two rays coming from the same
point is called an angle. The angle is measured in degrees or radians. A
shape that has no thickness is called a surface. The surface is formed by
a continuous set of lines. A surface that can be aligned with two
intersecting straight lines directed at an angle is called a plane. A figure
lying in a plane is called a plane figure. Flat figures are studied in
planimetrics. Non-planar, spatial, figures are studied in stereometry, or
solid geometry. A planar figure formed by a closed polyline is called a
polygon. The segments of a broken line are called the sides of a polygon.
A polygon that lies on one side of each of its sides is called convex. The
number of sides of a polygon is equal to the number of its interior angles,
and the sum of angles of a convex polygon is 180 (n - 2)º. The sum of the
angles of a triangle is, respectively, 180º, a quadrilateral is 360º, etc.
Lines that lie in the same plane and do not intersect anywhere are called
parallel. Quadrilaterals with pairs of parallel sides are called
parallelograms, and those with one pair of parallel sides are called
trapezoids. A parallelogram with equal sides is called a rhombus. A
polygon in which all sides and angles are equal to each other is called a
regular polygon. The angles of a regular triangle are, therefore, 60º, a
regular quadrilateral is 90º, a regular hexagon is 120º, etc. A 90º angle is
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called a right angle, triangles with right angles are called right triangles,
and quadrangles are called rectangles. A regular rectangle is called a
square. The vertices of polygons (the intersection points of their sides)
and the corresponding angles are denoted by the letters A, B, C, D,..., and
the sides lying against these vertices by the letters a, b, c, d, ...The sides
of a right triangle that form the right angle denoted by C are called the
legs (or catheti, singular: cathetus) and are denoted by the letters a and b,
respectively. The third side lies against vertex C, is called the hypotenuse,
and is denoted by the letter c. The following relations apply to a right
triangle

a2 + b2 = c2, a/c = sinA, b/c = cosA, a/b =tanA.

The first relation is called the Pythagorean theorem. The
magnitudes ѕinA, cosA, and tanA are called trigonometric. From
Pythagoras' theorem it follows that

sin2A + cos2A =1

A number of expressions connecting trigonometric quantities
follow from the above relations, which can be found in mathematics
reference books.

The following applies to non-rectangular (obtuse and acute)
triangles

a2 + b2 ± 2ab cosC = c2

Certain relationships are established between numerical and
geometric quantities. Each real number corresponds to a point on the
number axis, which is a straight line and is formed by a set of points.
Since these numbers form a one-to-one set with all the points of the
numerical axis that correspond to them, it is called the real axis. The
antipodes of real numbers are imaginary and complex numbers. The
notion of imaginary numbers arises in the extraction of the square root of
a negative real number. An imaginary unit is a number𝑗 = √−1. (1.1)
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Any imaginary number is represented by a point, which is
obtained by rotating the corresponding point of the positive real axis 90º
counterclockwise. In other words, the entire set of imaginary numbers
fills a straight line perpendicular to the real number axis. This line is
called the imaginary number axis, respectively. An imaginary number
is represented by a real number multiplied by an imaginary unit,
respectively, and is represented by a point on the imaginary axis. A
complex number �̃� is, respectively, a number represented by the sum of a
real and imaginary number as follows�̃� = 𝑥 + 𝑗𝑦. (1.2)

The numbers x and y are called the real and imaginary parts of a
complex number or its components. The algebraic sum of complex
numbers is found by the rules of addition of real numbers. The real and
imaginary parts are added separately to form the real and imaginary parts
of the resultant complex number. Multiplication and division of complex
numbers are performed according to the rules of operations on real
numbers. In doing so, it is assumed that

j1 = j, j2 = – 1, j3 = j · j2 = – j, j4 = j2 · j2 = + 1, j5 = …

Figure 1.1.
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Geometrically, a complex number in two-dimensional space is
represented by a point A on the complex plane formed by the horizontal
real and vertical imaginary axes (see Fig. 1.1). The quantity𝑧 = 𝑥 + 𝑦 (1.3)

is called the absolute value of a complex number. As can be seen
from Fig. 1.1, the absolute value of the complex number z = OA, where
OA is the line segment connecting point A with the origin of coordinates,
inclined to the real axis at an angle φ. From Figure 1.1 we can also see
that 𝑥 = 𝑧 cos 𝜑𝑦 = 𝑧 sin 𝜑 (1.4)

Substituting (1.4) into (1.2) gives�̂� = 𝑧(cos 𝜑 + 𝑗 sin 𝜑). (1.5)
Below, in Appendix 8, it will be shown that�̂� = 𝑧𝑒 , (1.6)

where e is an irrational number, which is called the Napier's constant,
after John Napier, or Euler's number (not to be confused with Euler's
constant), after the Swiss mathematician Leonhard Euler, e ≈ 2.73.

The expression (1.6) is called the Euler's formula.

1.3 Elements of Algebra

Algebra is based on mathematical operations on algebraic
expressions. Mathematical operations include any action that transforms
mathematical quantities and expressions. Combinations of mathematical
operations and mathematical signs, such as brackets that determine their
order, are called mathematical operators.  A  special  case  of
mathematical operators are algebraic actions. Algebraic expressions that
are joined by signs of equality, greater than or less than are called
equalities and inequalities, respectively. Equalities are divided into
identities, which are satisfied for all values of their constituent letters,
and equations, which are satisfied for some defined values of their
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constituent unknown quantities. The values of the unknown quantities
that turn an equation into an identity are called the roots of the equations.
Finding the root is called a solution to the equation. A distinction is made
between equations with one, two, and many unknown quantities.
Equations come in first (linear), second (quadratic), third (сubic), and
higher degrees. Equations of the second and third degree are also called
quadratic and cubic, respectively. The degree of the equation is equal to
the greatest sum of the exponents of the degrees in the unknown terms of
the equation. The number of roots of an equation with one unknown
quantity is equal to its degree. Solving equations with more than one
unknown quantity is impossible. To determine all the unknowns of such
equations, it is necessary to solve a system whose number of equations
equals the number of unknowns. First-degree equations and quadratic
equations, as well as their systems, are studied in elementary school and
require no explanation. Cubic equations are solved according to certain
rules, which are given in mathematical reference books. There are no
rules for solving equations of higher degrees in the general case. The rules
for solving equations in individual special cases are given in mathematics
reference books. In addition to equations linking algebraic expressions,
there are also more complex equations. These include the exponential,
logarithmic, irrational, and trigonometric and inverse trigonometric
equations.

1.4. Elements of Analytic Geometry

Geometric figures can be described both analytically, by means
of corresponding equations, and geometrically, by means of their visual
representation in the corresponding coordinate system. The branch of
mathematics that studies mathematical objects in terms of unambiguous
correspondence between their equations and geometric representations is
called analytic geometry. In analytic geometry all geometric objects
(points, lines, surfaces, bodies) are also given by their equations.

A straight line is given by a first-degree equation in the plane and
a system of two first-degree equations in space. Curved lines are also
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given by first-degree and higher-degree equations. Lines that are given
by second-degree equations are called second-order lines. These include
the circle, ellipse, parabola, and hyperbola.

The plane in space is given by the equation of the first degree,
surfaces are given by equations of higher degrees. Second-order surfaces
are spheres, ellipsoids, paraboloids, hyperboloids, prisms, cones, etc.

Analysis of equations describing geometric objects allows to
establish their geometric properties and vice versa.

The position of any point in n-dimensional space can be
determined using a system of coordinates. Such a system consists of a set
of points in space, the position of each of which is determined by a set of
n numbers called point coordinates. The coordinate system is formed by
mutually intersecting lines and surfaces called coordinate axes and
coordinate surfaces, respectively. Coordinate axes are directed relative to
each other at equal angles and intersect at one point, which is called the
origin of coordinates and is usually denoted by the letter O. Coordinate
axes are denoted by small letters of the Latin alphabet, e.g. x, y, z, etc.
The position of a point in space is defined by projecting it on the
coordinate axes. These axes are called Ox, Oy, Oz. The distance of the
projection of a point on a given axis to the origin is equal to its coordinate
on that axis. The most common is a rectangular Cartesian coordinate
system consisting of mutually perpendicular lines intersecting at the
origin. In addition to the Cartesian system, the cylindrical (polar) and
spherical systems, as well as systems of curvilinear coordinates, the axes
and coordinate surfaces do not intersect at right angles, are also widely
used. A coordinate system consisting of a single line with origin at some
arbitrary point is called linear and is used to represent a point on a line
whose position is determined by a single number. A coordinate system
formed by two axes, or in the particular case of the Cartesian system,
intersecting at right angles, is used to represent a point in the plane, and
is called flat, three axes - spatial, and so on. Equations of basic geometric
shapes in different coordinate systems are given in mathematical
reference books.
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1.5. Basics of tensor and vector algebra

A mathematical quantity characterized by more than one
numerical value is called a tensor. The tensor is usually denoted by a
Latin or Greek letter (in lower- or upper-case) with a curved line as a
single sine wave period above it. Each value of a tensor quantity is called
its component or constituent. When writing down a tensor quantity, its
components may be specified in parentheses following the tensor
notation. The number of components N of the tensor is determined by the
size m of the space in which it is given, and by the rank n of the tensor
using the following formula

N = mn. (1.7)
For example, the tensor of rank 2 in three-dimensional space has

N = 32 components. Tensors of rank zero have 1 component in any size
space and are called scalars. Tensors of the first rank have n components
in n-dimensional space and are called vectors. Vectors are denoted by
letters of the Latin alphabet with an arrow or dash above them. Each
tensor component is denoted by a lowercase letter of the Latin or Greek
alphabet and has an index at the bottom right whose number of elements
equals the rank of the tensor. For example, the components of the second-
rank tensor have the following designations - τxx, τxy, τxz ...etc., and the
components of the first-rank tensor (vector) - υx, υu, υz. If a scalar is
designated alphabetically, the index is not used. The index can be
expressed in numbers, letters, etc. Another important characteristic of a
tensor is its absolute value (modulus), the square of which is expressed
through the squares of its components by a simple formula𝑎 = 𝑎 , ,…,, ,…, (1.8)

The absolute value of the tensor is denoted by the same letter, but
without its accent or additional signs.

A set of mathematical operations with tensors and vectors is called
tensor algebra or vector algebra.
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1.5.1. Geometric representation of the tensor

Tensors can be given a visual geometric representation. In this
case, the tensor is represented by a segment of a straight line in N-
dimensional space connecting two points in that space, called the
beginning and the end of the tensor, with an arrow at the end of the
segment indicating the direction of the tensor. The length of this segment
is called the absolute value of the tensor or its modulus, and its projections
on the coordinate axes are called the tensor coordinates. There is a one-
to-one correspondence between the coordinates and the tensor
components, i.e. each coordinate corresponds to its tensor component and
vice versa. In the particular case of a vector а⃗, its coordinates are plotted
in the chosen scale along the axes Ox, Oy, Oz (Fig. 1.2). The x, y, and z
coordinates of a vector are sometimes called abscissa, ordinate, and
applicate, respectively. The intersection points of perpendiculars
reconstructed from the ends of coordinate segments (vector projections)
form the beginning and the end of the vector.

Figure 1.2
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Let us consider a right triangle OAB. From this triangle it follows
that the modulus of the vector OA is equal to the length of this segment
and is found by the formula

OA2 = a2 = OB2 + AB2 = a2
x + a2y (1.9)

It is easy to see that (1.9) is a special case of relation (1.8) for the
tensor. Figure (1.2) also shows that

ах = ОА соs φ; ау = ОА sin φ. (1.10)
From (1.10) and (1.6) it also follows that𝑎 = 𝑎𝑒 (1.11)
As for the tensors of the second and higher ranks, they can be

imagined as vectors of the corresponding N-dimensional space in the
absence, of course, of the possibility of their visual representation.

1.5.2. Addition of tensors

We will consider the addition of tensors by the example of adding
vectors. Let the vectors be given in complex form𝑎 = 𝑎 + 𝑗𝑎 ; 𝑏 = 𝑏 + 𝑗𝑏 ,
then 𝑎 + 𝑏 = 𝑎 + 𝑎 + 𝑗(𝑏 + 𝑏 ). (1.12)

Thus, the addition of two vectors given in the same plane is
reduced to the addition of their components. The formulated addition rule
is generalized to any number of vectors, including vectors not lying in the
same plane, i.e. when adding tensors or vectors given in any dimension
space. Let us consider the addition of two or more mutually perpendicular
vectors. In a particular case, you can choose a coordinate system in which
these vectors are directed along the coordinate axes and are of unit length.
In this case, the unit vector along the Ox axis can be written as 𝚤 (1,0,0);
along the Oy axis as 𝚥 (0,1,0), and along the Oz axis as �⃗� (0,0,1). Such
vectors are called unit vectors. Applying the formulated rule of addition
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for 3 vectors directed along the coordinate axes, we can write for the
resulting vector �⃗� = 𝑎 𝚤 + 𝑎 𝚥 + 𝑎 �⃗� (1.13)

The resulting ratio is called the rule of decomposition of vectors
by unit vectors.

Geometrically, the addition of vectors is reduced to the polygon
rule, according to which the sum vector is a side that closes a polygon
whose sides are equal to the lengths of the added vectors and are parallel
to their directions, with the end of each subsequent vector being attached
to the beginning of the previous one (see Fig. 1.3). The addition of tensors
of any rank is performed according to the same formulated rules.

Figure 1.3.

1.5.3. Multiplication of tensors

There is a distinction between the product of a scalar by a vector,
the scalar and vector product of two vectors, the mixed and double vector
product of three vectors, and the corresponding products of tensors of
higher ranks.

The product of a scalar by a vector is a vector whose modulus and
coordinates are increased or decreased by some number of times
determined by the magnitude of the scalar.
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 Scalar product of vectors is a scalar equal to the product of the
absolute value of one vector and the projection of the other vector onto
the first vector. In other words,𝑐 = �⃗�, 𝑏 = 𝑏, �⃗� = 𝑎𝑏 cos 𝜑 (1.14)
where φ is the angle between the vectors.

The scalar product of tensors of higher rank is performed
according to the same rule, so that the result is a tensor whose rank is
decreased by one unit.

It follows from (1.14) that the scalar product of perpendicular
(orthogonal) vectors, e.g. decomposition unit vectors, is zero, and the
scalar product of parallel (collinear) vectors is equal to the product of
their absolute values. The scalar product of a vector by itself is equal to
its square. It follows that, according to (1.13), the scalar product of two
vectors when multiplied directly gives the scalar

с = ахbx + ayby + azbz (1.15)
The vector product of two vectors 𝑐 = �⃗� × 𝑏  is a vector

perpendicular to both vectors being multiplied and equal in absolute value
to the area of a parallelogram built on these vectors. This means that the
absolute value of the vector product c = ab sinφ. The vector product is
directed so that, looking from it, you can see the rotation of the first vector
to the second at a smaller angle between them counterclockwise (see Fig.
1.4). It follows from this definition that�⃗� × 𝑏 = − 𝑏 × �⃗�
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Figure 1.4.

The components of the vector product are found by the
determinant rule

�⃗� × 𝑏 = 𝚤 𝚥 �⃗�𝑎 𝑎 𝑎𝑏 𝑏 𝑏= 𝑎 𝑏 − 𝑎 𝑏 𝚤 + (𝑎 𝑏 − 𝑎 𝑏 )𝚥 + 𝑎 𝑏 − 𝑎 𝑏 �⃗�
The tensor product of two tensors of the same rank is equal to a

tensor of the same rank.

The mixed vector-scalar product of three vectors is a scalar equal
to the volume of the parallelepiped built on these vectors.

�⃗� ⋅ 𝑏 × 𝑐 = 𝑎 𝑎 𝑎𝑏 𝑏 𝑏𝑐 𝑐 𝑐 (1.16)

The double vector product of three vectors is found by the formula�⃗� × 𝑏 × 𝑐 = 𝑏(�⃗�, 𝑐) − 𝑐(�⃗�, 𝑏) (1.18)
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There is a mnemonic device to memorize this formula quickly, it
reads: "bac minus cab."

Appendix 2. Elements of Mathematical
Analysis

All mathematical quantities are divided into constant and
variable. Constant quantities, in turn, are divided into universal
constants, which retain their values under any conditions, and
conditionally constants, which retain their values only under certain
conditions and within a particular problem. The first values include the
irrational numbers known from mathematics like π ≈ 3.14, Napier's
constant e ≈ 2.7. They also include the well-known physical world
constants (the speed of light in a vacuum, Boltzmann's constant,
Avogadro's number, Planck's constant, the gravitational constant, the
mass and charge of the electron, and several others). The conditionally
constants are, for example, the speed of uniform rectilinear motion, the
current in a circuit with a source of constant electromotive force, the
capacity and inductance of conductors, as well as numbers and their
alphabetic equivalents, etc.

2.1. Elements of Functional Analysis.

Variables are divided into independent variables that change
arbitrarily (arguments) and dependent variables that change when the
arguments change. The nature of the change in the dependent variables is
determined by the set of mathematical operations performed on the
argument. This set is called a function. The constants are usually denoted
by the first lowercase letters of the Latin or Greek alphabet, as well as by
specially assigned letters to these constants, such as π, e, c (speed  of
light), ħ (Planck's constant), etc. Variables are usually denoted by the last
lowercase letters of the Latin alphabet x, y, z, u, v, w, t, etc. A function is
most commonly denoted by the letters y, z, u, etc. or by the signs f, φ, etc.
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The statement that y is a function of x is symbolically written as y = f (x)
or y = y (x), etc.

The domain of a function is the entire set of values it argument
can take. The range of existence of a function is the set of all values that
it takes when the argument changes within its domain. Variables can take
a number of discrete values, expressed by certain numbers or, as they say,
a countable set. In addition, variables can be continuous and take on any
value. If the argument takes discrete values, we speak of a discrete
argument function. In the other case, we speak of a function of a
continuous argument or  a function  with  a  connected  domain  of
assignment. The area of the argument is determined by the conditions of
the problem and by the type of function. For example, if a function 𝑦 = √𝑥 − 1 is given, then the domain of the argument is defined by the
expression x ≥ 1. The range of existence of the function is not limited by
anything. On the contrary, for the function y = x2, the domain of the
argument is not bounded, and the range of existence of the function is
bounded by the relation y ≥ 0. If a variable in the process of its change
tends to zero, it is called infinitesimal. A function is called continuous
at a given point if an infinitesimal change in the argument corresponds to
an infinitesimal change in the function. A function that is continuous at
all points in the argument domain forms a connected domain. The points
at which this rule is not observed are called points of discontinuity. A
distinction is made between functions of one variable or many variables.
A function can tend to infinity, be bounded from below, above, or on
both sides, and have a limit. A function is called monotonically
increasing if its absolute value increases as the absolute value of the
argument increases, and monotonically decreasing if its absolute value
decreases as the absolute value of the argument increases. The limit of a
function y of a continuous argument x at x → a is its value A, to which
the function approaches as close as possible when the argument
approaches the value a. This is written down as follows𝐴 = lim→ 𝑦 (2.1)
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There are different ways to calculate the limit of a function, but
the most common is the L'Hospital's rule, which we will discuss below.
Let us give here, without proof, the three known limits called special.

lim→ sin 𝑥𝑥 = 1; lim→ 1 + 1𝑥 = 𝑒;  lim→ 1𝑖 − ln 𝑛 = 𝐶. (2.2)

(е ≈ 2.73, С ≈ 0,5772).

2.2. Elements of Differential Calculus

The limit of the ratio of the increment of a continuous function ∆y
= y (x + ∆x) - y (x) to the increment of the argument ∆x when ∆x → 0 is
called the first derivative of a function, which is denoted dy/dx (df (x)/ dx)
or y', and in the case of the time derivative �̇� . The definition of the
derivative is written as followslim→ Δ𝑦Δ𝑥 = 𝑑𝑦𝑑𝑥. (2.3)

This differentiation rule can be used to approximate the increment
of a function

Δy ≈ y’ · Δx (2.4)
The first derivative of the first derivative is called the second

derivative, and the first derivative of the second derivative is called the
third derivative, etc. The nth derivative is written in the form dny / dxn;
(df n (x)/ dxn) or as yII (second derivative), yIII (third derivative), yIV (fourth
derivative), etc. [f I (x), f II (x),... f n (x)]. The derivatives of a function of
one variable are called total derivatives. The calculation of derivatives
is called differentiation. Differentiation is considered the seventh
mathematical operation. This action is straightforward and can be
performed on any continuous function everywhere. The operation of
differentiation is given by the following properties of differentiation:

 - the derivative of a constant is zero;

 - the derivative of the algebraic sum of functions is equal to the
algebraic sum of the derivatives;
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 - the derivative of the product of a constant by the function is
equal to the product of a constant by the derivative of the function;

 - the derivative of a product of functions is equal to the sum of
the products of the derivatives of each function by all other (non-
differentiated) functions;

 - the derivative of the function f [φ (ψ (...(x)] is equal to the
product of the derivative of the external function by the derivative of the
first internal function, multiplied by the derivative of the second function,
etc.

The rules of differentiation are given in mathematical handbooks
and reference books on the basics of mathematical analysis.

L'Hospital's rule for calculating the limit is to write the function y
(x) in the form of ; y1 · y2; y1 – y2; 𝑦 . This notation reduces to

uncertainties (that is, expressions that are not computable) of the type ;

; (∞ - ∞); 00; ∞0; 1∞. Then the L'Hospital's rule is applied, according to
which for uncertainties of the first two kinds

lim 𝑦 = lim→ 𝑑𝑦𝑑𝑥𝑑𝑦𝑑𝑥 .
For uncertainties of the other types, the L'Hospital's rule is applied

after reducing them to the form of the first two uncertainties.

L'Hospital's rule can be applied repeatedly as long as uncertainty
persists.

The differentiation of functions of many variables is performed,
as a rule, on one of the variables under the conditional assumption that
the other variables are constant. Such derivatives are called partial
derivatives. If, for example, a function of two variables u (x, y) is given,
it has two partial derivatives on x and on y. The partial derivatives are
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written as follows: ; . Partial derivatives of higher orders are written

in the same way as the first partial derivatives, taking into account the
rules for writing total derivatives of higher orders.

The differential of a function of one variable is an expression of
the form dy = y’  · dx. The total differential of a function of many
variables is an expression of the form𝑑𝑢 = 𝜕𝑢𝜕𝑥 𝑑𝑥 + 𝜕𝑢𝜕𝑦 𝑑𝑦 + ⋯ (2.5)

Each term of this expression is called a partial differential or is
an approximate partial increment of a function with the increment of the
corresponding argument.

2.3. Function assignment. Functional series

A function can be defined in three ways - analytically, in a table,
and graphically. The analytical method, in which the function is defined
directly, that is, explicitly or implicitly, by means of a formula containing
the entire set of operations that define it, is the most accurate, but the least
obvious. The accuracy of the graphical method is much lower, but its
clarity is much higher. The tabular method has neither precision nor
clarity, but it is often easier to use. The graphical assignment uses the
coordinate method discussed in Appendix 1. The argument is plotted on
the horizontal axis, and the function is plotted on the vertical axis. Curves
of graphs in the plane represent the function of a single variable, and
curves in spatial coordinate systems represent the function of many
variables. A function of two variables is represented by a curve (diagram)
in three-dimensional space. A function of n variables is represented by a
curve in (n+1)-dimensional space. The representation of functions as
curves allows us to interpret the geometric meaning of the derivative and
the differential. In this case, the derivative of a function of one variable
at each point is defined as the slope ratio of the tangent to the curve at
that point. The differential is defined as the increment that the ordinate of
the tangent at a given point receives for a given increment of the
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argument. Functions of one variable are divided into elementary
functions that are expressed in quadrature (that is, using six algebraic
operations as well as using exponential, logarithmic, and trigonometric
functions without using infinite sums) and special functions that cannot
be expressed in quadrature. Elementary functions have derivatives in
their entire range of existence, except for the points of discontinuity and
the so-called special points of curve breaks. Elementary functions
include:

- linear functions in which the argument is in the degree not higher
than the first;

- integer polynomials of higher powers in which the argument is
a positive integer degree; special cases of polynomials are quadratic and
fractional-rational functions; the numerator and denominator of these
functions are integer polynomials, irrational functions in which the
argument is raised to fractional degrees and stands under the radical;

- exponential and logarithmic functions;

- direct and inverse trigonometric functions.

Linear functions are represented graphically by straight lines,
polynomials by complex continuous curves with changing character of
their increasing or decreasing and changing curvature. The points at
which the character of increasing or decreasing function changes are
called extremums and are subdivided into maxima and minima. At the
maxima, the monotone increase of the function changes to a monotone
decrease, and vice versa at the minima. The points at which the curvature
changes are called points of inflection.

Finding extremum points and inflection points is performed using
derivatives, assuming that at extremum points, the first derivatives and at
inflection points, the second derivatives are equal to zero.

Functions have, as a rule, besides extremum points and inflection
points, also points of discontinuity. There are three types of
discontinuity: infinite, finite, and removable. At points of the first type,
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the function tends to positive or negative infinity. Technically speaking,
in this case we are not talking about one, but about an infinite set of points
with the same value of the argument. For example, the function y = 1/x
tends to acquire an infinite number of infinite values if the value of the
argument tends to zero. At finite break points the function jumps from
one finite value to another. For example, the function𝑦 = 11 + 𝑒
tends to 1 when the argument x tends to 1 on the left, i.e., on the x < 1
side, but when x tends to 1 on the right, the function tends to zero. Finally,
in the case of an removable rupture, the function tends to the limit left
and right of the discontinuity point equally, but is not equal to its limit at
the discontinuity point itself. For example, the limit of a function

𝑦 = √1 + 𝑥 − 1𝑥 ,
when x tends to zero on the left or right, is 1/2, but at the point x = 0 itself,
turns into an uncertainty of the 0/0 type. The gap at this point is eliminated
by assuming that the specified uncertainty is also equal to 1/2 .

The behavior of the function when the argument tends to infinity
is also of great importance. In this case, the limit of the function can be
either infinite or finite. For example, it is finite and equal to zero for the
function y = 1/x that we considered above.

It is proved that any elementary function can always be expanded
into an infinite power series, and any periodically varying function can
be expanded into a Fourier trigonometric series. The series into which
elementary functions are decomposed are given in reference books on
higher mathematics. In general, a power series has the following form

𝑓(𝑥) = 𝑎 (𝑥 ± 𝑎) , (2.6)

where

22



𝑎 = 𝑓( )(𝑎)𝑛! ;
n! = 1 · 2 · 3 · … · n.

The decomposition of functions into a power series allows us to
prove Euler's formula (1.6).

The Fourier series is an infinite series of expansions of a periodic
function by the trigonometric functions sin and cos. In the general case a
periodic function𝜑(𝑥) = 𝑎2 + 𝑎 cos 𝑛𝜔𝑥 + 𝑏 sin 𝑛𝜔𝑥, (2.7)

where

𝑎 = 2𝑇 𝜑(𝑥) sin 𝑛𝜔𝑥 𝑑𝑥 , 𝑏 = 2𝑇 𝜑(𝑥) cos 𝑛𝜔𝑥 𝑑𝑥
An introduction to the expressions by which the Fourier series

coefficients are determined is given below.

ω = 2π/T is the angular frequency, and T is the period of change
of the initial function φ(x).

2.4. Elements of integral calculus

The operation inverse of differentiation is called integration. The
problem of integration is to find the function itself, that is, to find a
function F(x) whose derivative is equal to the given function f(x). The
function F(x) is called a primitive function. It follows from this
definition that = 𝑓(𝑥) or dF (x) = f (x) dx.

Since the derivative of an arbitrary constant C is equal to zero, the
above equation can also be written in the following form
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d [F (x) + C] = f (x) dx.

A function that is equal to the primitive function with an arbitrary
constant is called an indefinite integral and is denoted by𝑓 (𝑥)𝑑𝑥

In other words,𝑓 (𝑥)𝑑𝑥 = 𝐹(𝑥) + 𝐶 (2.8)

In mathematics, it is proved that the indefinite integral is
expressed by the limit of the infinite sum of infinitesimal quantities with
accuracy up to an arbitrary constant. This means that from the geometric
point of view integration is reduced to the summation of infinitesimal
areas of rectangles with the sides of the ordinate of the function f (x) at
each point and the element dx of that point. The summation is performed
from an arbitrarily chosen value of the argument (coordinate) a to the
current coordinate x. The result of the summation is obviously the area of
the figure bounded by the curve of the function f (x), the Ox axis, and the
two ordinates of the curve corresponding to the values of the argument a
and x (see Fig. 2.1).

Figure 2.1.
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The indefinite integral on the basis of the above can also be
determined by means of the so-called limits of integration a and x as
follows

𝑓 (𝑥)𝑑𝑥 = 𝐹(𝑥)
Basic properties of the indefinite integral:

 - the integral from zero is a constant value;

 - the constant multiplier can be taken out of the integral sign;

 - the integral of the algebraic sum of functions is equal to the
algebraic sum of the integrals of each function;

 - from the rule of differentiation of a product of functions follows
the so-called rule of integration by parts;𝑢(𝑥)𝑑𝑣(𝑥) = 𝑢(𝑥)𝑣(𝑥) − 𝑣(𝑥)𝑑𝑢(𝑥)

 - from the above definition of the indefinite integral follows the
basic theorem of the theory of integration, according to which

𝑓(𝑥)𝑑𝑥 = 𝐹(𝑥) − 𝐹(𝑎) = 𝐹(𝑥) + 𝐶 (2.9)

The value C is called the integration constant.

Integration is often seen as the eighth mathematical operation,
which is the inverse of differentiation. Like any inverse operation,
integration cannot be performed on any continuous function. Only a
relatively small number of functions can be integrated. Integrals from the
simplest functions that can be integrated are called table integrals.
Among the most common methods of integration, in addition to the use
of simple table integrals, are methods of integration of rational and
fractional-rational functions, integration by parts, as well as the method
of substitution (replacement of variables), including trigonometric ones.
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Tabular integrals and methods for integrating simple functions are given
in the mathematics reference appendices. Some simple rules of
integration are also given there. In some cases, approximate methods of
integration are also used, e.g., by decomposing a function into a series,
etc.

The definite integral is an integral with constant limits of
integration, namely

𝑓(𝑥)𝑑𝑥 = 𝐹(𝑏) − 𝐹(𝑎) (2.10)

A geometrically definite integral is interpreted by the area of a flat
figure bounded by the curve of the integrand function, the Ox axis, and
the ordinates of the function at the points of the limits of integration.

Definite integrals with infinite bounds and integrals from
discontinuous functions are called improper integrals. The calculation
of improper integrals is reduced to the calculation of their limits. To do
this, first calculate the indefinite integral, then find the corresponding
limits of the obtained functions at infinity or at discontinuity points, and,
if these limits exist (i.e., the improper integrals converge), then substitute
the limits of integration.

In principle, it is also possible to integrate functions of two and
many variables.

Consider some integrals from a function of two variables.

2.4.1. Integral depending on a parameter

An integral depending on a parameter is a definite integral in
which the integrand depends on two variables, and the integration is
performed on only one of them. The second variable is called the
parameter. For example, when integrating over the variable x (y is  a
parameter)
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𝑓(𝑥, 𝑦)𝑑𝑥 = 𝐹(𝑦) (2.11)

The concept of the integral depending on a parameter is also
generalized to integrals of functions of many variables.

2.4.2. Contour integrals

 - integral of the first type. This is the integral over the length of
the curve. It is taken from the segment AB of the curve K, given by the
corresponding equation y = f (x). The second variable and the variables
of integration are determined from the equation of the curve and from the
projections of points A and B of segment AB on the Ox axis and
substituted into the required integral, which is thus reduced to a definite
integral.

 - integral of the second type. This is the integral of the
projection of the segment AB of curve K on the Ox axis. It is also
calculated as a first type integral.

 - an integral of the general form. This is the integral of the sum
of two functions of two variables P(x,y) and Q(x,y) on the parameters x
and y and on the projections of the segment AB on the corresponding
coordinate axis. The same generalizes to functions of three or more
variables. Example of writing

𝐽 = 𝑃(𝑥, 𝑦)𝑑𝑥 + 𝑄(𝑥, 𝑦)𝑑𝑦 (2.12)

The contour integral can depend only on points A and B or also
on the shape of the path AB. The first case obviously occurs if the
integrand is a complete differential of some third function. In the two-
dimensional version, for example, if the integrand function

P (x, y) dx + Q (x, y) dy = dU (x, y),

then the integral is equal to
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U (B) – U (A).

The full differential condition means, by definition, that𝑃 = 𝜕𝑈𝜕𝑥 , 𝑄 = 𝜕𝑈𝜕𝑦 (2.13)

On the other hand, the existence of a contour integral, as will be
shown below, requires that𝜕𝑃𝜕𝑦 = 𝜕𝑄𝜕𝑥 (2.14)

This relationship provides a criterion for determining whether the
integrand is a complete differential.

The contour integral over a closed path is called a circulation.
Circulation, which does not depend on the shape of the path, is zero. This
fully applies to integrals from functions of three or more variables.

2.4.3. Multiple integrals.

The two-fold iterated integral or double integral of a function
of two variables f (x, y) extended over an area S is the limit of the sum of
n elementary areas of rectangles formed by ordinates of the function
calculated at points of the area and its elements when they are shrunk to
corresponding points, and their number n tends to infinity. It is written as
follows

𝑓(𝑥, 𝑦)𝑑𝑆 = lim→ , → 𝑓(𝑥 , 𝑦 )Δ𝑆 (2.15)

The three-fold iterated integral or triple integral, extended to
the volume of the body V, is also defined only for a function of three
variables given in the volume V.

To calculate a multiple integral, for example a double integral,
find the equation of the line y = f (x) of the boundary of the area (if it is
not given) and determine the limits of the external integral - (a, b) as the
projections of the outermost points of the area on the Ox axis, and the
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limits of the internal integral as the projections of the outermost points of
the boundary line on the Oy axis (f1 (x), f2 (x)), and integrate separately
on x and y in any convenient sequence. The triple integral is calculated in
the same way.

2.4.4. Surface integrals

The surface integral is a generalization of the double integral for
a function of three variables given in a connected domain. The surface
integral is taken over the area S of a given surface. It is equal to the limit
of the sum of the products of the function on the size of the area element
when it is pulled down to a point. A distinction is made between surface
integrals of the first type, second type, and general type. The differences
between them are the same as in the case of contour integrals.

2.5. Elements of differential equations

An equation containing unknown functions, their derivatives
(differentials), and arguments is called a differential. In the general case
of the function u (x, y, z, t...) the differential equation is𝐹 𝑢, 𝑥, 𝑦, 𝑧, … , 𝜕𝑢𝜕𝑥 , 𝜕𝑢𝜕𝑦 , 𝜕𝑢𝜕𝑧 , … , 𝜕 𝑢𝜕𝑥 , … = 0

With variables and their derivatives there can be both variable and
constant coefficients. The order of the higher derivatives included in a
differential equation determines the order of the equation. A distinction
is made between equations of the first, second and higher orders. An
equation of a function of one variable is called an ordinary equation,
and an equation of functions of many variables is called a partial
derivative equation. To solve a differential equation means to find its
integral, which is one or more values of the unknown function that turns
the equation into an identity. The operation of finding the integral of an
equation is called its integration. Since integration is ambiguous and its
result is defined with an accuracy up to arbitrary constants of integration,

29



the integral always contains these constants, and their number is equal to
the order of the equation. To find an unambiguous solution of these
problems, it is necessary to define in addition the equations defining the
conditions of behavior of the function or its derivatives on the boundary
of the domain of the desired solution (boundary conditions) and at the
initial moment of time (initial conditions). Such problems are called
boundary problems or Cauchy problems.

Integrating a differential equation is always a challenging creative
task. However, there are a number of standard methods that make this
task easier.

2.5.1. Methods for integrating first-order equations

Variable separation method. If the equation can be reduced to the
form М (х) K (у) = P (x) Q (y) then its variables can be divided and the
left and right parts integrated separately. Suppose, for example, we are
given the equation

xy’ + y = 0.

It can be written in the form xdy =  – ydx and divided by its
variables 𝑑𝑦𝑦 = − 𝑑𝑥𝑥 .

By integrating, on the left and on the right, we obtain

ln y = – ln x + ln C,

from which 𝑦 = 𝐶𝑥 (2.16)

In some cases, the equation can only be separated after
appropriate transformations. An example is the homogeneous equation.

Let the following equation be given
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M (x, y) + N (x, y) y’ = 0

provided that the functions M and N are homogeneous with respect to
their variables of the same degree. Homogeneity, for example of M,
means that

M (ax, ay, ...) = an M (x, y, ...).

In this case the equation can be reduced to the form with
separating variables by substituting 𝑢 = . For example, the equation

у2 + x (x – y) у’ = 0.

Here М (х, у) = у2, and N (х, у) = х (х – у) are  homogeneous by
definition functions (for example, for N = ax (ax – ay) = a2x (x – y) ). We
apply the substitution y = ux, then𝑑𝑥𝑥 + (1 − 𝑢) 𝑑𝑢𝑢 = 0

Integration of this equation gives

ln x + ln u – u = ln C.

By inverse substitution of the value of u we obtain𝑦 = 𝐶𝑒 (2.17)
Total differential method. If the left side of the equation

Mdx + Ndy =0 (2.18)
can be represented by the total differential of some function u (see 2.14),
the equation takes the form

du = 0,

and its integral

u (x, y) = C

It follows that
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𝑢 = 𝑀(𝜑, 𝑦)𝑑𝜑 + 𝑁(𝑥 , 𝜏)𝑑𝜏 (2.19)

If the left part of equation 2.18 is not a total differential, then an
integrating factor μ (x, y) is introduced, by multiplying by which (2.18)
turns into an equation in total differentials. Substituting this factor into
equation 2.14 leads to the equation for the factor μ𝑁 𝜕 ln 𝜇𝜕𝑥 − 𝑀 𝜕 ln 𝜇𝜕𝑦 = 𝜕𝑀𝜕𝑦 − 𝜕𝑁𝜕𝑥 (2.20)

Let's consider a simple example. Solve the equation.

(x2 + y)dx – x dy = 0. (2.21)
In the given equation М = x2 +y, and N = – x. Accordingly𝜕𝑀𝜕𝑦 = 1, 𝜕𝑁𝜕𝑥 = −1.
In other words, the total differential condition is not satisfied.

Since the integrating factor from equation 2.20 cannot be found in the
general case, we simplify equation 2.20, assuming that it is only a
function of x, then according to (2.20) we obtain the equation𝑑 ln 𝜇 = −2 𝑑𝑥𝑥 (2.22)

Solving the resulting equation gives𝜇 = 1𝑥 .
Substituting the resulting value of the integrating factor into M

and N allows us to obtain the integral of the original equation from
Equation 2.19 in the following form𝑥 − 𝑦𝑥 = 𝐶.

Integration of linear equations. Linear equations are differential
equations in which the unknown function and its derivative are in the first
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degree. The linear equation in general case is written in the following
form 𝑦 + 𝑃(𝑥)𝑦 = 𝑄(𝑥) (2.23)

It is easy to show that a linear equation can be reduced to an
equation in total differentials by an integrating factor 𝜇 = 𝑒∫ . The
general integral of the linear equation is𝑦 = 𝑒 ∫ 𝑄𝑒∫ + 𝐶 (2.24)

Other methods. Nonlinear equations of the first order can be
solved only in partial cases. For example, if one particular solution is
known or guessed (i.e. solution y1 for some value of the integration
constant C), then the general solution of the so-called Riccati equation of
the form 𝑦 = 𝑃(𝑥)𝑦 + 𝑄(𝑥)𝑦 + 𝑅(𝑥)
is found by replacing variables 𝑦 = 𝑦 + , which reduces the original
equation to a linear equation. The equation F = 0, not solved with respect
to the derivative, can be solved if at some point (x0, y0) the equation F
(x0, y0, p) = 0, where р = у’, has n valid roots pi and can be solved with
respect to the derivative. Reference books on higher mathematics and, in
particular, on differential equations, provide a number of other cases of
integration of first-order equations.

2.5.2. Methods of integration of higher order equations

The lowering of order. In some cases it is possible to lower the
order of the equation, including when

 - equations do not explicitly contain the argument x -  by
substituting variables 𝑦 = 𝑝; 𝑦 = 𝑝  etc.

 - equations do not explicitly contain the function y -  by
substituting variables 𝑦 = 𝑝;
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 - equations are homogeneous with respect to the function and its
derivatives - by replacing the variables 𝑦 = 𝑦𝑧.

Linear equations. Linear equations of higher orders with
constant coefficients ai are equations of the following form𝑦( ) + 𝑎 𝑦( ) + 𝑎 𝑦( ) + ⋯ = 𝐹(𝑥) (2.25)

An equation with a nonzero right-hand side is called
inhomogeneous. The equation with the right zero part is homogeneous.
The solution to a inhomogeneous equation is the sum of the solution to
the homogeneous one plus the partial solution to the non-homogeneous
one. The solution of the homogeneous equation is found according to the
relation 𝑦 = 𝐶 𝑒 (2.26)
where Ci are integration constants. Their number is equal to the order of
the equation

ri are roots of the characteristic equation, which are obtained from the
algebraic equation by replacing the derivatives in the differential equation
with appropriate degrees.

In the case of multiple roots of k-th multiplicity, solutions of the
homogeneous equation are also linear combinations of

Ci + k – 1 x k – 1

For complex roots the Euler formula is used, according to which

e jrx = cos rx + j sin rx.

The solution of an inhomogeneous equation is performed by the
method of variation of constants given in the reference books. In the case
of a special, for example, right transcendental part, a partial solution of
an non-homogeneous equation is sought in the form of the right part. Let's
consider an example of solving the most common in practice linear
equations of the second order with constant coefficients and the special
right part
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𝑑 𝑦𝑑𝑥 − 6 𝑑𝑦𝑑𝑥 + 8𝑦 = 𝑒  (2.27)

The characteristic equation

r2 – 6r + 8 = 0
r1 = 4; r2 = 2. (2.28)

Solving a homogeneous equation

y0 = C1e4x + C2e2x.

We are looking for a partial solution of the inhomogeneous
equation in the form of the right-hand side

y1 = Axe2x𝑑𝑦𝑑𝑥 = 2𝐴𝑥𝑒 + 𝐴𝑒 ; 𝑑 𝑦𝑑𝑥 = 4𝐴𝑥𝑒 + 4𝐴𝑒 .
Substitution gives the expression

4 Axe2x + 4 Ae2x – 12 Axe2x  – 6 Ae2x +8 Axe2x = e2x,

from which 𝐴 = − 12
Thus, the solution to the equation has the following form𝑦 = 𝐶 𝑒 + 𝐶 − 𝑥2 𝑒 (2.29)
Other methods for integrating ordinary differential equations can

be found in special reference books on higher mathematics.

2.5.3. Equations in partial derivatives

Equations of the first order. As in the case of ordinary higher-
order equations, we distinguish between linear and nonlinear,
homogeneous and inhomogeneous partial differential equations. Let's
consider solving linear equations of the following form
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𝑋 𝜕𝑧𝜕𝑥 + 𝑋 𝜕𝑧𝜕𝑥 + ⋯ = 𝑌. (2.30)

The coefficients Xi, like the function z, are functions of n
variables. The problem of integration of a linear equation is equivalent to
the problem of integration of a system of first order ordinary equations𝑑𝑥𝑋 = 𝑑𝑥𝑋 = ⋯ = 𝑑𝑧𝑌 .

The problem of integrating a nonlinear equation is more
complicated and will not be considered, since it is rarely applied in
practice.

Problems in Mathematical Physics. Wave Equation. In physics,
we most often have to solve the Cauchy problem for second-order partial
differential linear equations with or without the right-hand side.  These
problems are called mathematical physics problems, and methods of their
solution are studied in a special mathematical discipline called "Methods
of Mathematical Physics". In mathematics, as we know, it is very
common to use symbolic notations for the set of mathematical operations
that must be performed on the arguments in order to obtain a function.
These symbols are called operators. Examples of simple operators are
signs of mathematical operations +, –, , ∑  , ∫ ,  etc.,  symbols  of
trigonometric functions sin, cos, tan, etc., logarithmic symbols log, lg, ln,
etc. Differential operators of the first, second and higher orders are also
widespread. The following operators are the most used in the methods of
mathematical physics:

nabla, or Del operator is a symbolic vector with
following components∇= 𝜕𝜕𝑥 , 𝜕𝜕𝑦 , 𝜕𝜕𝑧 ,

Laplace operatorΔ = 𝜕𝜕𝑥 +  𝜕𝜕𝑦 + 𝜕𝜕𝑧 ,
d'Alembert operator

(2.31)
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□ = 𝜕𝜕𝑡 − 𝑎 Δ,
operators grad, div, rot, and so on.
Let us consider some simple problems of mathematical physics.

Wave Equation. The wave equation is a linear equation of
vibration propagation in a homogeneous continuous medium. In the
general case the wave equation has the form□ = 𝜕 𝑢𝜕𝑡 − 𝑎 Δu = Q(x, y, z, t) (2.32)

The function u (x, y, z, t), for which the wave equation is written
is called the wave function. The wave equation describes almost all kinds
of small vibrations in a solid material medium - longitudinal vibrations in
gases, liquids, solids, transverse vibrations in strings, on the surface of
water, and so on. The Cauchy problem for the case of a homogeneous
equation is given by initial and boundary conditions for the function and
its derivative. Particular cases of wave equations are: the stationary
equation that takes place for the wave function independent of time (an
example is the Schrödinger stationary equation in quantum mechanics),
homogeneous one-dimensional equations (string equation), nonlinear
equations, etc.

Let us consider, for example, the problem of free vibrations of a
string. This is, firstly, a one-dimensional problem, since the wave arising
in the string propagates only along the string direction, in the space of
one dimension, coinciding, for example, with the Ox axis. Since the
string, according to the condition, performs free vibrations, the problem
is described by the homogeneous wave equation at the corresponding
initial and boundary conditions, namely𝜕 𝑢𝜕𝑡 − 𝑎 𝜕 𝑢𝜕𝑡 = 0𝑢| = 𝑓(𝑥), 𝜕𝑢𝜕𝑥 = 𝜑(𝑥), 𝑢| = 0⎭⎬

⎫
(2.33)

Linear partial differential equations of higher orders, especially in
the case of homogeneous equations, allow, as a rule, the substitution of
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𝑢(𝑥 , … , 𝑥 , 𝑡) = 𝑓 (𝑥 ) ⋅ … ⋅ 𝑓 (𝑥 ) ⋅ 𝑓 (𝑥 ) (2.34)
Applying the above substitution in the form u = X (x) T (t) for

Equation 2.33 under the specified initial and boundary conditions and
dividing the variables, we obtain a system of two ordinary homogeneous
linear equations of second order𝑑 𝑋𝑑𝑥 + 𝜆 𝑋 = 0;  𝑑 𝑇𝑑𝑡 + 𝜆 𝑎 𝑇 = 0,
from which 𝑋 = 𝐶 𝑒 + 𝐶 𝑒𝑇 = 𝐶 𝑒 + 𝐶 𝑒

It follows from the boundary conditions that

X = C sin λx, sin λl = 0.

From the second equation it follows that 𝜆 = .

Substituting these values using the Euler formula, we find that𝑢 = 𝑎 cos 𝜋𝑎𝑛𝑙 𝑡 + 𝑏 sin 𝜋𝑎𝑛𝑙 𝑡 sin 𝜋𝑛𝑙 𝑥 (2.35)
General solution of the equation is

𝑢 = 𝑢 (2.36)

Satisfying the initial conditions of the problem, we find an and bn

as coefficients of the Fourier series, replacing for an, φ by f and T by l
(see 2.7).

The problem of consideration of longitudinal vibrations of a rod
differs from the considered problem of transverse vibrations of a string
only by boundary conditions, according to which one end of the rod is
free and the other end performs longitudinal vibrations so that the rate of
change of its wave function along the length with the change in deviation
x is proportional to the acting force F
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𝜕𝑢𝜕𝑥 = 𝑘𝐹.
The following tasks are more complicated ones:

 - heat propagation in a homogeneous medium, the equation𝜕𝑢𝜕𝑥 − 𝑎 Δ𝑢 = 𝑄(𝑥, 𝑡),
- Laplace and Poisson equations, which are given by the potential

theory equations, respectively; the homogeneous equation (∆u =  0  -
Laplace equation) and the inhomogeneous equation (∆u = - 4πρ - Poisson
equation; here ρ is a point function, such as charge density);

- the propagation of electric current over wires (the problem of
telegraphers), etc.

The solutions to these problems are given in reference guides on
methods of mathematical physics.

Appendix 3. Fundamentals of Field Theory

A region of space, each point of which is associated with a value
of some quantity, is called a field of that quantity. In the general case we
should talk about tensor fields. The numerical axis is, for example, a field
of real numbers, and the coordinate plane is a field of complex numbers.
However, most often the concept of a field is used to describe physical
quantities. These are, for example, fields of stress and shear rate tensors
in hydroaerodynamics, fields of temperatures and pressures in
thermodynamics, fields of velocities and forces in mechanics, fields of
electric potential, electric, magnetic and electromagnetic fields in
electrodynamics, and so on. Particular cases of tensor fields are scalar and
vector fields.

A distinction is made between flat, plane-parallel and spatial
fields. A flat field is a field defined only for points of some plane. A field
in a plane perpendicular to some chosen direction, such as the normal, is
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called plane-parallel field. The field can also be called a function of the
point. For example, a scalar field U can be written as a scalar function of
a vector argument 𝑈(𝑟).

Spatial fields are defined as functions of three coordinates in
Cartesian, cylindrical or spherical coordinate systems. Flat and plane-
parallel fields are defined as functions of two variables in Cartesian and
polar coordinate systems. Linear fields are defined as a function of one
variable in a linear coordinate system.

A scalar field can be centrally symmetric (central) or
axisymmetric (axial). A centrally symmetric or spherically symmetric
field is a scalar field whose values are equal for all points of space that
are equidistant from some point called the center. The value of the field
U at the point M in this case depends only on the distance from this point
to the center. If the field values are the same for all points equidistant
from some straight line (field axis), then the field is called cylindrical-
symmetric, axial or cylindrical.

It is assumed that the field can have a source. So, for example, the
source of the gravitational field is mass, the source of the electrostatic
field is an electric charge, the source of the magnetic field is an electric
charge moving with a constant speed, which is called a current, the source
of the electromagnetic field is an electric charge moving with
acceleration, etc. In the most general case, sources are called charges.
Charges are characterized by their magnitude. A distinction is made
between extended and point charges. A point charge is a charge whose
size (extent) can be neglected compared to the distance to the field point
in question. It is assumed that the charges of the same-name field interact
with each other with some force. This force is called the field force.
Known field forces are, for example, the gravitational force of
gravitation, the Coulomb force of the interaction of electric charges,
forces that cause the transfer of heat, material particles, etc. The force of
a field, referred to the value of its charge, is called the field strength. The
field strength is a vector quantity. It represents the force characteristic of
the field at each of its points. Electric and magnetic field strengths are
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widely known. The gravity field strength is the acceleration vector of
gravity, etc. The field, which is characterized by strength, is called a force
field.

Consider some force field with strength 𝐸  in the Cartesian
coordinate system. Let's call the field lines the non-intersecting lines
drawn through the field points so that their direction at each point
coincides with the direction of the field strength vector at that point. The
density of field lines in the vicinity of a given point must be proportional
to the magnitude of the field strength vector. According to this definition,
field lines can be seen as a geometric image or picture of the field.

Let us choose an arbitrary point А (x, y, z) in the field. Let us set
the scalar function φ (x, y, z) at this point so that𝛿𝜑 = − 𝐸, 𝑑𝑠 , (3.1)
where ds (dx, dy, dz) is an arbitrary element of the line drawn through
point A.

The sign δ means that the function element φ in the general case
is not a complete differential of the field point coordinates. As a special
case, a field is called conservative if at each of its points there exists a
scalar function φ whose differential is total. Otherwise, the field is called
nonconservative or vortex field.

For a conservative field, according to its definition,𝛿𝜑 = 𝑑𝜑 = 𝜕𝜑𝜕𝑥 𝑑𝑥 + 𝜕𝜑𝜕𝑦 𝑑𝑦 + 𝜕𝜑𝜕𝑧 𝑑𝑧. (3.2)

On the other hand, according to the definition of the scalar product
of two vectors and equation (3.2)𝐸 = − 𝜕𝜑𝜕𝑥 ;   𝐸 = − 𝜕𝜑𝜕𝑦 ;  𝐸 = 𝜕𝜑𝜕𝑧 . (3.3)

The vector �⃗� , whose components are equal respectively;  ;   to some scalar function φ is called the gradient of this

function or the gradient of the scalar field (�⃗� = ∇𝜑). It follows that for a
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conservative field there exists a scalar function φ such that the strenght
vector of this field 𝐸 = grad 𝜑 (3.4)

It follows from the definition of the function φ that from the
physical point of view it has the meaning of work. If a charge of the same
nature as the source is placed at a given point in the force field, the work
of the charge movement is done under the action of the field forces. Such
a charge is called a test charge. Thus, the differential of the above function
expresses the work of the field strength vector to move a unit of sample
charge along the elementary path ds in the direction of the vector 𝑑𝑠. The
minus sign means that the work is performed against the field forces. In
the case of a conservative field, this function is called a potential.

Let us denote the work of moving a unit of a test charge in a
conservative field by φ, then, as we know, the work A of moving a charge
q from point 1 to point 2 of the field along the path ds under the action of
the strength 𝐸 is

𝐴 = 𝑞 𝐸, 𝑑𝑠 . (3.5)

For the conservative field

𝐴 = 𝑞 𝑑𝜑 = 𝑞(𝜑 − 𝜑 ). (3.6)

In other words, the work of moving a test charge under the action
of conservative field forces does not depend on the shape of the path, but
is determined by the potentials at the starting and ending points of motion.
This means that the scalar potential of a conservative field can be defined
as the energy characteristic of the field at each of its points.

In the general case, the values of some field characteristic may be
the same for some set of field points. Such a set of points forms a surface
in space, which is called a level surface. Surfaces of the conservative
field level for which φ = const are called equipotential. In the case of a
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flat field, the level surfaces will be reduced to level lines. When the field
strength vector 𝐸  is perpendicular to the displacement 𝑑𝑠, the field is
called central. The differential of the central potential field is zero, and
its equipotential surfaces are concentric spheres or, for a flat field, circles.
The field lines in this case are radial.

Let us consider the mathematical meaning of the gradient vector.

3.1. Gradient of the scalar field

Let us consider a scalar field 𝜑(𝑟) = 𝜑(𝑥, 𝑦, 𝑧), for example, the
field of electrostatic potential. Let us call the derivative along the
direction s of a function φ at point M0 (x0, y0, z0) a quantity  equal to
the limit of the ratio of the increment of the function φ to the displacement
∆s along the direction s in the neighborhood of point M0, when it shrinks
to that point. In other words, the derivative along the direction𝜕𝜑𝜕𝑠 = lim→ ΔφΔs (3.8)

It follows from this definition that the derivative along the
direction characterizes the rate of change of a function in a given direction
and at a given point.

Let us draw a normal �⃗� and an arbitrary direction 𝑠 to point M0 of
the level surface φ0. Let us consider the points of intersection of Mn and
MS of the normal n and direction s with the level surface φ0 + ∆φ (see Fig.
3.1).

43



Figure 3.1.

According to the above definition𝜕𝜑𝜕𝑠 = lim→ φ − φ𝑀 𝑀 (3.8)

Since the points Ms and Mn lie on the level surface, the values of
the function in it φs and φn are equal to each other. On the other hand, as
can be seen from Figure 3.1,𝑀 𝑀 = 𝑀 𝑀cos(𝑠, �⃗�),𝜕𝜑𝜕𝑠 = 𝜕𝜑𝜕𝑛 cos(𝑠, �⃗�). (3.9)

It follows that the rate of change of the function at a given point
is maximal in the direction of the normal. Based on the above, let us
introduce a special vector 𝑏, directed along the normal to the level surface
in the direction of increasing function, numerically equal to the derivative
along the direction of the normal, and call it the gradient of the function.
It is, in this way, 𝑏 = 𝜕𝜑𝜕𝑛 �⃗� (3.10)
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𝑏 = 𝜕𝜑𝜕𝑛 (3.11)

Substituting 3.10 into 3.8 gives𝜕𝜑𝜕𝑠 = 𝑏 cos(𝑠, �⃗�). (3.12)

It follows from 3.11 that the directional derivative is equal to the
projection of the gradient vector onto this direction. Choosing coordinate
axes of Cartesian coordinate system as directions, we can, therefore, write
for components of gradient vector in Cartesian coordinate system𝑏 = 𝜕𝜑𝜕𝑥 ;   𝑏 = 𝜕𝜑𝜕𝑦 ;  𝑏 = 𝜕𝜑𝜕𝑧 . (3.13)

From (3.13) and (3.4) we see that𝑏 = grad 𝜑 (3.14)
Components of the gradient (without proof): in the cylindrical

coordinate system grad 𝜕𝜕𝑟 , 1𝑟 𝜕𝜕𝜃 , 𝜕𝜕𝑧 ;
and in the spherical coordinate systemgrad 𝜕𝜕𝑟 , 1𝑟 sin 𝜃 𝜕𝜕𝜃 , 1𝑟  𝜕𝜕𝜓 ;

Applying the Nabla operator according to 2.31, we obtaingrad φ = ∇φ.
It also follows from the definition of the gradient that the gradient

of a function can be viewed as a certain operator that converts a scalar to
a vector, or, more precisely, increases the rank of the tensor by one unit.
Since the gradient is a differential operator, all rules of differentiation
apply to it.
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Let us calculate, for example, the gradient of the numerical value
of the position vector 𝑟 of some point M with respect to the point of
reference O (see Fig. 3.2).

Figure 3.2.

When the position of point O is fixed, the maximum change in the
length (numerical value) of the position vector r = OM occurs in the
direction of motion of point M from O toward M, and grad 𝑟 = = 1,

therefore, grad  𝑟 = ⃗. In the case of a fixed position of the observation
point and moving the reference pointgrad  𝑟 = 𝑟𝑟

In the general casegrad 𝑓(𝑟) = 𝜕𝑓𝜕𝑟 grad 𝑟 = ± 𝜕𝑓𝜕𝑟
3.2. Flux of the Vector. Divergence.

Depending on the configuration of the field, its lines can be closed
or open, including those going to infinity. Open lines begin at points
called field sources and end at points called field sinks. The flux of
vector field strength dN through the area dS is the value proportional to
the area and to the value of the field strength vector perpendicular to the
area. If a vector field is defined by some vector �⃗� (𝑟), then according to
this definition 𝑑𝑁 = 𝑎 𝑑𝑆 (3.15)
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where an is the projection of the vector �⃗� on the normal to the area at the
given point.

According to the definition of the scalar product (see section 1.5.3
of Appendix 1) 𝑑𝑁 = �⃗�, 𝑑𝑆 (3.16)

Let us choose a point in the field localization space �⃗�  and
surround it with an elementary closed surface dS. Considering the
specified point as the source of the field, let us determine the flux of the
field strength vector through this surface. Let us conventionally assume
that the flux entering the volume bounded by this surface is positive. The
flux coming out of this volume is assumed to be negative. Let's choose a
Cartesian coordinate system with the origin at a given point. In the space
of the chosen reference system there are only 3 independent directions
along the coordinate axes, and in each of these directions the surface is
intersected by a flux of lines entering and leaving the volume. Thus, for
example, the flux in the direction of the Ox axis is equal according to the
above definition

dNx = (a2x – a1x) dydz.

Here the expression in parentheses is the increment of the function
а (х, у, z) in the direction of the Ox axis and, according to the definition
of the partial increment of the function (see Section 2.2), is equal to𝜕𝑎𝜕𝑥 𝑑𝑥.

It follows that the total total flux through the closed area dS is𝑑𝑁 = 𝜕𝑎𝜕𝑥 + 𝜕𝑎𝜕𝑦 + 𝜕𝑎𝜕𝑧 𝑑𝑥𝑑𝑦𝑑𝑧 (3.17)

where dx dy dz = dV is the elementary volume covered by the area dS.

The scalar expression in parentheses of the relation (3.17) is called
the divergence of the vector a and is denoted as follows div �⃗�
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div �⃗� = 𝜕𝑎𝜕𝑥 + 𝜕𝑎𝜕𝑦 + 𝜕𝑎𝜕𝑧 (3.18)

It follows from (3.18) that the divergence can also be written
through the Nabla operator as followsdiv �⃗� = (∇, �⃗�) (3.19)

In other words, divergence lowers the rank of the tensor by one
unit.

Thus, finally 𝑑𝑁 = div �⃗� 𝑑𝑉. (3.20)
From (3.17) and the definition of the derivative it also follows that

div �⃗� = lim→ ∫ 𝑎 𝑑𝑆Δ𝑉 (3.21)

From (3.21) we can also see that divergence can be viewed as a
volume differentiation.

The flux through the finite surface S, covering the volume V, is
equal to

𝑁 = div �⃗� 𝑑𝑉. (3.22)

Equation (3.22) shows that if the vector divergence is zero, the
flux is zero, i.e. the field has neither sources nor sinks. It was shown
above that for conservative fields 𝐸 = −grad 𝜑 . It follows that the
divergence of the conservative field strength vector isdiv 𝐸 = −(∇, ∇𝜑) = −Δ𝜑 ≠ 0.

This means that the conservative field lines are not closed, i.e.,
they start at the sources and end at the sinks. In the case when the field
lines are closed, i.e. the field divergence is zero, the field, as mentioned
above, is vortex. Hence the name of the introduced quantity is
divergence.
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Divergence is a differential operator, so it, like the gradient, obeys
the rules of differentiation, although it also has some specific features.
For example, grad div �⃗� = ∇(∇, �⃗�) ≠ ∇ �⃗�,
as it would be in a normal differentiation.

Comparing 3.16 and 3.20, we find that

𝑎 𝑑𝑆 = div �⃗� 𝑑𝑉. (3.23)

The relation (3.23) is known as the Gaussian formula.

In the cylindrical coordinate systemdiv �⃗� = 1𝑟 𝜕𝜕𝑟 (𝑟𝑎 ) + 1𝑟 𝜕𝑎𝜕𝜃 + 𝜕𝑎𝜕𝑧
In the spherical coordinate systemdiv �⃗� = 1𝑟 𝜕𝜕𝑟 (𝑟 𝑎 ) + 1𝑟 sin 𝜃 𝜕𝑎𝜕𝜑 + 1𝑟 sin 𝜃 𝜕𝜕𝜃 sin 𝜃𝑎 .
3.3. Circulation of the Vector. Curl.

An important characteristic of a vector field is its circulation C
(see Section 2.4). An example of circulation can be, in particular, the
work of field forces to move a point (charge) along a closed loop.

It is easy to show that the circulation of the conservative vector
field is zero. Indeed, as shown above, a conservative field �⃗� is described
by a nonzero divergence and it is always possible to find a scalar function
φ for which �⃗� = grad φ. According to the definition of circulation

𝐶 = 𝑎 𝑑𝑠 = (grad 𝜑, 𝑑𝑠) = 𝑑𝜑 = 0 (3.24)
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The result reflects the well-known fact that the work of the
conservative field forces does not depend on the shape of the path, that
is, it is determined only by the initial and final point of displacement.
When moving along a closed loop, the positive work performed on the
direct path is compensated by the negative work on the return path.

Vortex fields behave differently. The work of the vortex field
forces does not depend on the direction of the loop traversal and is
determined not only by the initial and end points of the displacement path,
but also by its shape. Therefore, the work of the vortex field forces on a
closed loop, and in the general case, the circulation of the vector of this
field, is not equal to zero. To describe the vortex fields, a special vector
related to circulation is introduced in connection with the above. This
vector is called a curl and is denoted by rot. The rotor is introduced as
follows. For simplicity, let the closed circulation loop of the vortex field
vector �⃗�  is a flat elementary rectangle ABCD with the center at the
beginning of coordinates (see Fig. 3.3).

Figure 3.3.

Let us place this contour in the xOy plane so that its sides AB and
CD, equal to dx, are parallel to the Ox axis, and its sides DA and BC,
equal to du, are parallel to the Oy axis. The Oz axis in this case coincides
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with its normal for a positive counterclockwise bypass of the contour.
Circulation of the field vector along this contour

𝐶 = 𝑎 𝑑𝑠 = 𝑎 𝑑𝑥 + 𝑎 𝑑𝑦 − 𝑎 𝑑𝑥
− 𝑎 𝑑𝑦 (3.25)

According to the mean value theorem (see Section 2.2)𝑎 − 𝑎 = − 𝜕𝑎𝜕𝑦 𝑑𝑦
and so on. Therefore, the circulation along the contour located in

the xOy plane, the normal of which is the Oz axis, is described by the
relation 𝐶 = 𝜕𝑎𝜕𝑥 − 𝜕𝑎𝜕𝑦 𝑑𝑆   (𝑑𝑆 = 𝑑𝑥𝑑𝑦) (3.26)

Similarly𝐶 = 𝜕𝑎𝜕𝑧 − 𝜕𝑎𝜕𝑥 𝑑𝑆   (𝑑𝑆 = 𝑑𝑥𝑑𝑧)𝐶 = 𝜕𝑎𝜕𝑦 − 𝜕𝑎𝜕𝑧 𝑑𝑆   (𝑑𝑆 = 𝑑𝑦𝑑𝑧)⎭⎪⎬
⎪⎫

(3.27)

It follows from (3.26) and (3.27) that there is a vector rot �⃗� with
components Cx, Cy, and Cz that describes the circulation. This vector can
be written using the following third-order determinant

rot �⃗� = 𝚤 𝚥 �⃗�𝜕𝜕𝑥 𝜕𝜕𝑦 𝜕𝜕𝑧𝑎 𝑎 𝑎 = [∇, �⃗�] (3.28)

A comparison of 3.25 and 3.28 gives
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(�⃗�, 𝑑𝑠) = rot �⃗�, 𝑑𝑆 (3.29)

The resulting ratio is called the Stokes formula or theorem. From
the Stokes formula, in particular, another definition of the rotor follows,
namely: "The curl of a vortex vector field is a vector whose normal
component at a given point is equal to the derivative of the circulation of
the field vector along the contour of an arbitrary area dS, taken by the size
of this area". The surface passes through this point perpendicular to the
curl.

Based on the obtained relations, it is easy to show thatrot grad 𝜑 = 0;  div rot �⃗� = 0;  rot rot �⃗�=  grad div �⃗� − ∇ �⃗�. (3.30)

It follows from the first relation (3.30) that the conservative field
has no vortices. From the second relation it follows that the vortex field
cannot have open lines. Finally, from the third equation it follows that the
curl of the vortex field cannot be equal to zero.

Curl as a differential operator, obeys the rules of differentiation,
although it has some peculiarities. In addition, unlike the gradient and
divergence, it does not change the rank of the tensor and, in particular,
converts a vector to a vector.

We leave it to the students to write down an expression for the
curl in cylindrical and spherical coordinate systems.

The properties and relations for differential and integral operators
of vector (tensor) analysis are described in more detail in special manuals
on higher mathematics.
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Appendix 4. International system of units of
physical quantities SI

Table 4.1. Base units

The quantity Unit
Name Symbol

1 Length (linear dimension) meter m
2 Mass kilogram kg
3 Time second s
4 Electric current amper A
5 Thermodynamic temperature kelvin K
6 Luminous intensity candela cd
7 Amount of substance mole mol

Table 4.2. Derived units

The quantity Unit Expression
(in SI based

units)
Name Symbol

1 Plane angle radian rad m · m-1 = 1
2 Solid angle steradian sr m2 · m-2 = 1
3 Celsius

temperature
degree
Celsius

ºC K

4 Frequency herz Hz s-1

5 Velocity, speed - - m · s-1

6 Acceleration - - m · s-2

7 Force newton N kg · ms-2

8 Energy, work,
heat

joule J N · m = kgm2s-2

9 Momentum - - N · s = kgms-1

10 Power watt W Js-1
11 Pressure (stress) pascal Pa N · m-2 = kgm-1

12 Luminous flux lumen lm cd ⋅ sr
13 Illuminance lux lx lm · m-2 = cd ⋅

sr -2
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14 Electric charge coulomb C A · s
15 Electric potential

(voltage)
volt V J · C-1 = kgm2s-

3A-1

16 Resistance ohm Ω V · A-1 = kgm2s-

3A-2

17 Capacitance farad F C · V-1 = kg -1m
-2s4A2

18
Magnetic flux weber Wb V · s = kgm2s-

2A-1

19 Magnetic flux
density tesla T Wb · m -2 = kgs-

2A-1

20 Inductance henry H Ohm · s =
kgm2s-2A-2

21 Electrical
conductance siemens S Ohm-1 = kg -1m

-2s3A2

22 Activity referred
to a radionuclide becquerel Bq s-1

23 Absorbed dose of
ionising radiation gray Gg J · kg -1 = m2s-2

24
Equivalent dose
of ionising
radiation

sivert Sv J · kg -1 = m2s-2

25 Catalytic activity katal kat mole · s-1
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Table 4.3. Non-SI units

Unit Symbol Value in SI units
1 minute min 60 s
2 hour h 60 min = 3600 s
3 day d 24 h = 86400 s

4 month - 30,4375 days = 2,6298 ·
106s

5 year - 365,25 days = 3.15576 ·
107 s

6 light year - 9,461 · 1015 m
7 parsec ps 3,086 · 1016 m

8 unified atomic mass
unit (Dalton) Da 1,6605402·10-27 kg

9 Electronvolt eV 1,60217733·10-19 J
10 bel B -
11 neper Np -
12 litre L 10-3 m3

13 tonne t 103 kg
14 astronomical unit ua 1,49597870691·1011 m
15 nautical mile - 1852 m

16 knot - mile · h-1= =0,5144444
ms-1

17 are a 102 m2

18 hectare ha 104 m2

19 bar bar 105 Pa
20 angstrom Å 10-10 m
21 barn b 10-28 m2

22 grad ° 1,74444·10-2 rad
23 minute ! 2,907·10-6 rad
24 second '' 4,845·10-8 rad
25 dioptry dptr m -1

26 kW-hour kW-h 3,6·106 J
27 V-amper VA 1 W
28 amper-hour A-h 3600 As
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Notes

1. There is no dot placed after the unit designation.

2. The name of the unit in the text is written with a lowercase letter, and
the designation of units named after scientists is written with a capital
letter.

3. Fractional and multiple units are denoted with a prefix to the main
designation.

4. Standards of units of physical quantities are used to ensure the
uniformity of measurements. Standards are stored in special conditions
and are subject to periodic testing. A distinction is made between primary
and secondary, state and international standards. Basic units of
measurement are reproduced, as a rule, with the help of primary standards
in accordance with their definition. Secondary standards reproduce
derived units. The definition of measurement standards is given in
reference books on metrology.
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Appendix 5. Physical constants

5.1. Fundamental physical constants

1 Gravitational constant G = 6,67 · 10-11 Nm2kg -2

2 Speed of light in a vacuum c = 2,997... · 108 ≈ 3 · 108 ms-1

3 The Planck's constant ħ = h/2n π ≈ 1,054 · 10-34 J · s
4 Electron rest mass m0 ≈ 9,109 · 10 -31 kg
5 Proton rest mass mp ≈ 1,673 · 10 -27 kg
6 Neutron rest mass Mp ≈ 1,675 · 10 -27 kg
7 Electron charge е = 1,602 · 10-19 C
8 Avogadro's constant NA ≈ 6,022 · 1023

9 Boltzmann's constant K ≈ 1,381 · 10 -23

10 Vacuum permittivity ε0 ≈ 8,854 · 10 -12 Fm -1

11 Vacuum magnetic permeability μ0 ≈ 12,57 · 10 -8 Hnm -1

12 Gas constant R ≈ 8,314 J · mole

5.2. Astronomical constants

1 Distance of the Earth from the Sun (average)
(astronomical unit) ~1,496·1011 m

2 Mass of the Sun ~1,989·1030 kg
3 Radius of the Sun ~6,9599·108 m
4 Mass of the Earth ~5,976·1024 kg
5 Radius of the Earth ~6,378·106 m
6 Mass of the Moon ~7,35·1022 kg
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